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A time domain simulation model which approximates the
three-dimensional velocity fluctuations of wind turbulence
has been developed. This model is used in a discrete time
control algorithm to regulate the output torque of a wind
turbine by changing the pitch angle of the turbine blade.
The wind model provides a velocity field which varies
randomly with time énd space and gives the proper correla-
tion between spatial locations and velocity components.

In addition, the spectral representations approximate
those observed from a rotating reference frame. The ver-
sion of the model described in this report is a time

domain simulation. It makes use of a random number gener-



ator to construct a white noise time series with a uniform
power spectral density over the frequency range of inter-
est. This noise source is then passed through a set of
appropriate linear filters to obtain the various wind
velocity fluctuations which would be experienced b? a
rotating wind turbine blade. The blade pitch angle
remains fixed in the computation of average torque values
for each revolution which does not permit a continuous
control action to be implemented. Therefore, a discrete
control model with a time interval equal to the period of
the rotor revolution is chosen. A control action which
compensates for the flapping oscillation and induces a
torque step response with a small overshoot which reaches
steady state in a minimum number of steps is desirable.

To achieve this, an integral control action is combined
with a digital narrow band rejection filter. The integral
control action eliminates the steady error in the result-

ing torque response.
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DISCRETE-TIME BLADE PITCH CONTROL FOR WIND TURBINE TORQUE
REGULATION WITH DIGITALLY SIMULATED TURBULENCE EXCITATION

INTRODUCTION

The objective of this report is twofold. 1In the
first part a time domain simulation model which approxi-
mates the three-~dimensional velocity fluctuations of wind
turbulence is developed. 1In the second part a control
algorithm is developed and incorporated into an existing
simulation model of a wind turbine. The torque on the
wind turbine rotating shaft is controlled by changing the
pitch angle of the wind turbine blade; The input distur-
bances to the wind turbine are composed of steady and.
turbulence parts. The varying turbulent wind fluctuations
are digitally simulated using the reports of the analysis
in Part I.

The wind model provides a velocity field which varies
randomly with time and space and gives the proper correla-
tion between spatial locations and velocity components.

In addition, the spectral representations approximate
those observed for a rotating reference frame. It makes
use of a random number generator to construct a white
noise series with avuniform power spectral density over
the frequency range of interest. This noise source is

then passed through a set of appropriate linear filters to



2
obtain the various wind velocity fluctuations which would
be experienced by a rotating wind turbine blade.

The program is written in Fortran V on the CDC Cyber
170/720 series. It is designed in a block-structured form
so various tasks performed within the program are essen-
tially separate routines and are linked together by an
executive program. Appendices I.C. through I.F include a
complete program listing, a sample input data file, a pro-
cedural example of the interactive features, and results
of the sample run as observed from the tip of a Mod-OA

wind turbine blade.




CHAPTER I.1 TURBULENCE MODEL

I.1.1 Introduction

Fluctuations in the aerodynamic forces on a wind tur-
bine blade are generated by the relative motions of the
air with respect to the blade. These relative motions are
comprised of two parts: the motions of the blade and the
motions of the air. The motions of the air can further be
divided into the undisturbed turbulent flow and the
"induced flow" due to the presence of the wind turbine
wake. The terms comprising the undisturbed turbulent flow
will be characterized in this chapter. More precisely,
for a horizontal axis wind turbine, the aerodynamic forces
are determined by the instantaneous air velocity distribu-
tion aloﬁg each of the turbine blades. These blades, in
turn, are rotating through the turbulence field which is
being convected past the turbine rotor disk. It is thus
necessary to characterize the wind turbulence field by a
three-dimensional velocity vector which varies randomly
with time and with the position in space. A complete
statistical description of this turbulent velocity field
requires the determination of all possible joint probabil-
ity distributions between different velocity components at
different times and positions in space. Clearly, such a
description will not be possible without considerable

simplification. The validity of the resulting simplified
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model will depend upon a comparison of the characteristics
predicted by the model and those observed in the atmos-
phere and more importantly, those observed in actual wind
turbine field tests (l). The turbulence model used in
this report is duscussed in detail in reference (2) and is

briefly described in this chapter for clarity.

I.1.2 Model Assumptions and Approximations

The wind turbulence inputs used in the model are
determined in three basic modeling steps. First, the
turbulent velocity field is characterized by a model which
gives the correlations between velocity components at
different spatial points and at different time instants.
Second, the velocity field is approximated in the rotor
disk by a series which varies with time. A correlation
model for these components is derived from the original
field model. Third, simple rational spectral representa-
tions are determined which approximate the derived corre-
lation model. A brief discussion of the assumptions and
approximations used in these steps follows.

The turbulent velocity field is assumed to be sta-
tionary, locally homogeneous, isotropic (3), and satisfy-
ing Taylor's frozen field hypothesis (4). The Von Karman
model (5) is used to characterize the correlations between
velocities of spatially separated points. This model is

widely used in aircraft turbulence response analysis




(6,7). However, due to the anisotropic nature of the
atmospheric boundary layer, the use of the model for wind
turbines can be questioned. Frost (8) has estimated that
the deviation from isotropy is of secondary importance.
However, one should not rely heavily on design calcula-
tions which use this model until more complete experi-
mental verification is available.

Once the correlation model of the turbulence field is
established, the velocity is approximated over the rotor
disk by a series which varies with time. This is done to
simplify the statistical nature of the random field to
that of several stochastic processes.

In order to further simplify the model, the power
spectral densities are approximated by a simple rational
form, and nondimensional parameters are determined which
match the low frequency power spectral density and the -
total variance for the computed spectra and the rational
approximation. The rational form chosen corresponds to an
exponentially correlated random process which is particu-
larly easy to handle both analytically and in simula-
tion. The following section describes the resulting model

in more detail.



I.1.3 Series Approximation to the Turbulent Velocity
Field

The longitudinal component of turbulence (normal to
the rotor disk) generally provides the most important
aerodynamic effect on wind turbines (5). 1In order to
provide an accurate determination of these effects, it is
proposed to approximate the variation of the velocity
across the rotor disk by a series which includes up to
quadratic terms. Using Taylor's frozen field hypothesis
relating the spatial and time dependency, the velocity

across the rotor disk can be written as follows:

vy(x, —th, zZ) = Vy,o(t) + Vy'z(t)z + Vy,x(t)x
2 1 .2
*Vy, a8z 7 R7)

2 1.2
- >R+ V
Vo e (BN (X 7 })

(t)zx
N Y YeZX

(1.1)

where vy(x,y,z) is the velocity component depending on the
X,yY,2 coordinates shown in Figure I.1.1 and R is the

radius of the rotor disk. The series of functions:




£, =1

fl =z

£, = x (1.2)
f3 = 22 - % R?

f4 = x2 - % R2

f5 = zX

were found by choosing polynomials with successively
higher powers of x and z and enforcing conditions of

mutual orthogonality over the rotor disk, i.e.,
] fj(x,z)fk(x,z) dA =0 ; for j # k (1.3)

Thus, the least-square functional approximation (i.e., the
terms Vy,... which minimize the difference between vy and
the approximate value) is given using the usual general-

ized Fourier expansion formulas (6):

Voo =/ (L), aa/f (112 aa

Vo2 © [ z vy da/[ z2 da

Vg, = xv, 8/ x? aa (1.4)
Vy,zz =/ (22 -  ’%) vy aa/| (22 - 3 %)% aa

Vo, xx = / (x2 - % R2) vy da/| (x2 - % R2)2 da

[ zx vy daa/f (zx)2 dAa



Note that the time argument has been dropped for these
equations. It should be understood that these equations
apply at any instant of time. Now, when the statistics of
the terms Vy,zz and Vy,xx are considered it is found that
correlation between the terms exists which complicates the
statistical modeling. To alleviate this problem, linear
combinations of the last thfee terms are defined so that
the resulting six terms are all mutually uncorrelated.

Thus, we define

_ 1
Y.rr 2 (Vy,zz + Vy,xx)
v =1 -V, ) (1.5)
ysrce 2 Yr22Z ¥ rXX
=31
Vy,rs T2 Vy,zx

Converting to polar coordinates and substituting Egs.
(1.5) into Egs. (l1.1) and (l.4) gives the following form

for the series

=V + + i
vy y,0 vy,z r cosy Vy,x r siny
2 1l .2 2
+ v&,rr(r - 3R ) + Vy,rc r® cos2y
v r? sin2 (1.6)
y,rs v

where the six relations:




1 R 27
Voo =—3 [ [ v, rdrdy
- T o o =
4 R 2w
Vo, 2 = - of of vy(rcosw)rdrd¢
4 R 2n
Vy,x = :Ez of of vy(rsinw)rdrdw (1.7)
Vy,rr = i_i_‘ ofR ofzw vy(x? - 3 R)raray
Vo,re = :%3 ofR onw vy(§2c032w)rdrdw
6 R 2% 2 .
Vo,r8 ™ :;3 of of vy(r sin2y)rdrdy

Given a three-dimensional correlation model for the
velocity component Vg it is then pdssible to utilize Egs.
(1.7) to compute the correlation statistics or power spec-
tral densities for the six "indicial"™ velocity terms:
Vy,o' Vy'z, etc. Before proceeding to do this, however,
we will first consider the éonvergence properties of the
series.

In general, the convergence of a series based on
orthogonal functions requires that the true function be
square integrable over the domain of interest (7). The
turbulent velocity component, Vyr is a random variable
depending on space and time, so that the usual Riemann
integration does not apply. The theorems of stochastic

integration (8) can be used instead, and the concept of
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convergence of the series can be defined so that the vari-
ance of the difference between the true value and that
given by the truncated series goes to zero as more and
more terms in the series are "included (9). Since the
variance of this approximation error is positive over the
whole domain, a necessary and sufficient condition for
convergence of the series is that the error variance,
averaged over the domain, goes to zero. This averaged
error variance is then a measure of the convergence pro-
perties of the series. Table I.l.l1 shows the relative

approximation error for the truncated series defined by

Eq. (1.6).
e, = —— [ E[(v, - v,)?] da (1.8)
2 y y .
o A
where Gy = truncated series representation of Vy
02 = variance of Vy
A = area of rotor disk.

The relative approximation error is seen to depend on the
dimensionless parameter R/L where R is the disk radius and
L is the turbulence integral scale. The computation was
carried out using the three-dimensional Von Karman corre-
lation function for isotropic turbulence (10).

Also shown in Table I.l.1 are the relative approxima-

tion errors when only the uniform term V is retained

Y.O

and when the uniform and shear terms Vy,o' Vy,z' and Vy,x

are retained. These relative approximation errors are
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designated e¢5 and ;. respectively. It can immediately be
seen from the table that the quadratic terms improve the
approximation and that the approximation is relatively
poor when the disk radius approaches the turbulence inte-
gral scale. It must be remembered, however, that the Von
Karman model does not account for the effects of high wave
number viscous dissipation and that the aerodynamic wind
turbine rotor forces are always given by spatial integra-
tions which also provide low-pass wave number filtering.
Thus, it is expected that these aerodynamic forces will be
computed more accurately using the truncated series
approximation than is indicated by the data in
Table I.l.l.

Using uniform and linear gradient terms to approxi-
mate the in-plane velocity components yields six turbu-
lence input terms which vary with time. The complete
turbulence model can then be written in the following

form:

Normal Velocity Components:

vy(x,-th,z) =V *Vy,2(2) Y, L (x)

Y0 Y X
2 2 1 .2
+ Vy.rr(z +x -3 R7)
2 2
+ vy,rc(z - %) + v, g(22x) (1.9)
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In-Plane Velocity Components:

[
<

(1.10)
v

v (x,=V,t,2) zZ -¢e, X +¢e__X

- + v
x,0  Yzx?% T Yazx zZX ZX

where the time-dependent linear gradient turbulence param-

eters are given by

Yax =3 (Va,x = Veuz)
;zx =%— (Vz,x + Vx,z)
eax =3 (V2,2 ™ Vo)
sz =% (VZ,Z + Vx,x)

There are twelve turbulence inputs which define the turbu-
lence model. These twelve terms are described in
Table I.l.2. Drawings of typical fluid streamlines are

shown in Figure I.l.2 for the in-plane gradient terms.

I.1l.4 Filtered Noise Model For Turbulence

Each of these twelve terms are modeled as a station-
ary exponentially correlated random process, and they are
assumed to be uncorrelated with each other; although it

can be shown using mass continuity that V ,0! and

y €zx
Vy,rr must be correlated. The sz and Vy,rr terms are

relatively small compared with Vy,o'

ated with lhrge aerodynamic forces allowing this simplica-

and are not associ-
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tion without introducing large error. This makes it pos-

sible to represent the turbulence inputs in the following

way
dx _
'a—t = Ax + Bw (l.11)
where x = the vector of system states
w = the vector of independent white noise
excitations
A,B = matrices.

The state correlation matrix is defined by
R(t) = E[x(t + ©)x7(t)] (1.12)
and is computed from the differential equation (for t > 0)

R = AR , R(o) = X ' {1.13)

e

where the covariance matrix X (assuming zero mean) is

given by the solution to the Lyapunov equation (1l1l)

AX + XAT + B stT =0 (1.14)

and S, is the diagonal matrix of noise power spectral
densities.

Assuming that the turbulence terms Vy,o' Vy,z, etc.
form the state of a system in the form of Eq. (1l.1l1l), the
correlation matrix R(tr) is given by the various cross

correlations among the individual terms. For example,
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E[Vy’z(t+1)vy,z(t)] =

1 2
(;Ez) ffE[xl,—Vw(t+r),zl)vy(xz,-th,zz]]
where the integration is over two disks of radius R. The
subscripts 1 and 2 refer to coordinates in the two disks,

respectively. Given the correlation matrix R(t), the

matrix A can be computed by integrating Eqg. (1.13)

R(w) = R(o) = A [ R(t) dr (1.16)
o
or
A = =X -1
= - [s+] (1.17)
where S, = [ R(r1) dr
o
X = R(0)

and R(=) = 0.

The B matrix then must satisfy Eq. (l.14) so that

BS, BT = - (ax + xa’) (1.18)

If the noise terms are chosen (for simplicity) to have

identical power spectral densities, then

T 1
BBT = - & (X + xa") (1.19)

w

where S, is now the scalar PSD of each noise excitation.

A unique matrix B can be determined if it is also required
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to be triangular, the result of which is called the
Chloeskii square root matrix (12).

In cases where R(t) is diagonal, considerable simpli-
fication results. In this case, A and B will both be

diagonal and the resulting scalar equations apply:

k
A B e e—
k S+k
Ay Xy

w
where the subscript indicates the kth gjagonal element.

It is convenient to choose the noise power spectral

density
s = 02L (1.21)
w V3
W

thereby defining the noise vector to be dimensionless.

Also, dimensionless parameters can be chosen so that

LA
k (1.22)

for uniform terms

k for shear terms (1.23)

R — for quadratic terms

These parameters only depend on the dimensionless ratio

R/L, where again R is the disk radius and L is the turbu-
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lence integral scale. The previous work (13) gives a
table of values for the ax and bx parameters for the uni-
form and shear values, while the quadratic terms are found
in (14). In summary, then, for a given turbine rotor size
and turbulence scale, the ax and bx parameters are
given. Then using the steady wind speed V,, and the turbu-

lent velocity variance o2, the dimensional parameters

governing the model are then computed.

In order to avoid the inconvenient interpolation
necessary in evaluating the model parameters when R/L is
not a tabulated value, a regression procedure was utilized
to give a formula for calculating the dimensionless param-
eters. For the uniform terms, the following form was

found to describe the data:

k,Re(1 + k3R,)

a, or b, = kl- T+ k4R*) (1.24)
R
where R . = T -

The parameters k;, etc. were determined as follows:
1. kj is given by the limit as R« » 0, which
is either 1, 2 or /732,
2. Assuming k3 = 0 and R« is small, Eq. (1.24)

can be rearranged so that

a, or b, = k; - k, Ry + K.k, R2 (1.25)
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the parameters k, and k, can be found using
standard linear reqression using the data
for small Rax.

3. The equation is then rearranged into the
form
K Ry

a, Oor b* = kl + Cl -1-—+—E-4—R—* + CzR (1l.26)

and the parameters c} and cp are again

determined using standard linear regression

with k; and k4 fixed. These values then

give the final values of k; and k3 param-

eters.,
Table I.l.3 shows the resulting regression parameters for
the uniform turbulence terms including the in-plane veloc-
ity components described in the previoﬁs work (14).

For the shear and quadratic terms a different form

was found to fit the data. In this case,
a, or b, = kR, + k3 + k, Ry (1.27)

The parameter k, was chosen to match the slope of a log-
log plot of ax or ba vs. Re. A value of k, = 1 was found
to give good results for ax and ky = 1/4 for bsx. The
remaining parameters, kj, k3 and k,, were determined by
standard linear regression. Table I.l.4 gives the result-
ing values for both the normal and in-plane components for

the shear terms and for the normal component quadratic
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terms. Again the data for the in-plane terms were taken
from reference (15). In all cases the maximum deviation
of the data from the regression curves was less than 5%.

The model describing the turbulent velocity fluctua-
tions can be summarized in polar coordinates in the fol-

lowing manner

Normal Velocity

vy(r,t,w) = Vy,o + Vy'x(r51nw) + Vy'z(rcosw)
2 2 2
+ vy'rr(r - R°/R) + vy’rc(r cos2y)
+ v, __(rsin2y) (1.28)
y.,Irs

In-Plane Velocities

Velretey) =V, o+ (Y, = Yzx) TCOSY
+ (e, = €54) TSiNY

(1.29)
vlrstey) =V, o+ (Yz * Yzg) TSiny

+ ey * sz) rcosy

where from Figure I.l.l, z = rcosy and x = rsiny.

Each of the turbulence terms (Vy,o' Vx,o""',vy,rs)

is given by an equation of the form

(v

gl vav, =bmw (1.30)

Yoo

o™
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where a and b are defined by

\'
a = - f‘l a, (1.31)
(Vs/L) by for uniform terms
1.32
b = (Vﬁ/RL) ba for shear terms ( )
2,.2 .
(Vy/R°L) by for quadratic terms

where ax and ba are given by the regression Egs. (1.24) or
(1.26) and depend on the ratio R/L. The white noise term

w for each of the twelve turbulence terms is an independ-

ent noise source with PSD = gzL . A computer program
A

W
which calculates the values of a and b in Egs. (1.30) is

given as the subroutine ATMOS in Appendix I.C.




Table I.1l.1l.

Relative Approximation Error for Series

Approximation.
R/L €0 €] €2
.01 .044 .026 .020
.054 .135 .081 .060
.1 .201 .121 .091
3 «397 . 250 .189
.5 .527 .348 .264
1.0 . 724 527 .411
2.0 .889 0737 .608

20



Table I.l.2.
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Description of Turbulence Input Terms.

AcAwmIrEI A
SOk LMWL

uniform lateral or side component (in
plane)

uniform longitudinal component along mean
wind

uniform vertical component (in plane)

lateral gradient of longitudinal velocity

vertical gradient of longitudinal
velocity

swirl about mean wind axis (in plane)

shear strain rates (in plane)

dilation (in plane)
symmetric quadratic variation
quadratic with cos2y azmuthial variation

quadratic with sin2y azmuthial variation




Table I.l.3.

Regression Parameters for Uniform

Turbulence Terms.

22

ki ) ki ky
ax 2.0 2.894 -.1383 2.049
V. & V
z X ba 2.0 3.290 +.0270 2.054
a% 1.0 1.713 -.0790 2.048
Vy
b /20 2.713 +.01591 2.051
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Table I.l.4. Regression Parameters for Shear and
Quadratic Turbulence Terms.

k) ko k3
ky
Ax «3266 l.0 «5953 -.1142
\" & V.
z X
Yo Y ba .2811 .25 .6450 -.1500
ax* .4343 1.0 <9170 -.1532
Yzx
bx «2579 «25 .6467 -,1093
ax «5342 1.0 1- 276 -2.147
yzx & €zx
ba «1167 «25 « 7733 -.1284
ar 1.654 1.0 1.069 +2,154
€zx
bax <3546 «25 «3951 +,2593
ax 1.091 1.0 00276 +00686
Vy,rr
b* 05508 025 06473 "01365
ax 1.081 1.0 -0279 +00685

Vy,rc & Vy,rs
b .3897 .25 <4567 -.0948




(x2 ¥ ),

Rotor Disk

Figure I.1.1. Rotor disk coordinate system.
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Figure I.l.2. Streamlines for in-plane velocity
gradient terms.
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CHAPTER 1.2 NUMERICAL SIMULATION

I.2.1 Introduction

The objective of this chapter is to outline the
development for the digital simulation of the turbulence
velocity terms. It consists of two parts. First, genera-
tion of uniformly distributed random numbers using the
multiplicative congruential method to approximate a white-
noise time series. Second, generation of the turbulence
velocity terms by filtering the white-noise time series to
obtain the required shape of the spectral density to pro-

duce the appropriate statistics for velocity fluctuations.

I.2.2 Generation of Uniformly Distributed Random Numbers

There are a number of techniques for generating ran-
dom variables by digital computers for simulation pur-
poses. Most of these are reproducible and therefore the
same sequence of numbers will be generated over and over
again éiven the same starting input. It may be argued
that such repeatable random numbers are, in the true sta-
tistical sense, deterministic, and not random. Since the
digital computer consists of a finite, though large, num-
ber of states, the use of an algorithm for the generation
of random variables also implies that eventually the com-
puter must return to a state that had existed at the time
of some previous implementation of the algorithm which

starts the repetition cycle. However, as long as several
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conditions are met random numbers generated by an algo-
rithm on digital computers can be used for simulation
problems. Numbers that are generated by means of a stored
algorithm are accordingly referred to as pseudorandom.

Four criteria are usually employed to evaluate the
suitability of random number generation method:

1l. length of the sequence of the generated

random variates,

2. uniformity of amplitude-density spectrum,

3. small degree of autocorrelation, and

4. speed of computer execution.

The first criterion simply means that the period of
repetition should be much larger than the intended simula-
tion period. The second implies that a uniform probabil-
ity density is to be obtained and the degree of the true
uniformity is to be a measure of quality. The third con-
dition, if met perfectly, would mean that zero correlation
would result, corresponding to true white noise. This is
never the case and a reasonably small degree of correla-
tion (and consequent deviation of the power-spectral den-
sity from a flat spectrum of white-noise) should be con-
sidered allowable.

However, the best criterion is the applicability of
the method used to the problem at hand. Methods that are
very satisfactory for some applications are found unsuit-

able when applied to others. With these considerations in
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mind, the method to be suggested here is the one known
either as the multiplicative congruential technique, or as
the power residue method. It selects as the kth pseudo-
random number the remainder of the division of the product
of a constant integer ¢, and the (k-l)St pseudorandom
number by some second constant m. Denoting Xy the kth

variate so generated, the operation is described mathemat-

ically as follows:
X = CXp 4 (mod m) (2.1)

where the relation "x (mod m)" denotes the selection of
the remainder from the division of x by m. This technique
is ideally suited for implementation on a digital com-
puter.

In practice it is recommended that the starting seed

value, Xof be some odd number less than m. For a binary

computer, one selects m = 2P yhere b is the number of bits
per word. The value of the constant ¢ should be of the

order m and in the form
c =8k = 3 for any integer k > 0

Thus providing a maximum period of 2(b-2) pseudorandom
numbers, each between zero and 2b (1,2). Dividing the
generated variates by m gives the numbers between zero and
one. This scheme is used in subroutine RANDOM of

Appendix I.C to generate a sequence of uniformly
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distributed random numbers, starting with an arbitrary

I.2.3 Construction of a White-Noise Time Series
By definition a set of uniformly distributed random
numbers with a range of 0 to m will have a probability

density function given by

0 ¢<x <m

probability : f(x) = (2.2)
density function ~

3l

0 otherwise

The mean value and variance of the random variates may be
computed from its probability density function, Eq. (2.2),

as follows

u, = EIX] =_°[ x £(x) dx = 5

) (2.3)
2 _ w2y 2 . m
o = E[X"] [E[X]] 1=

A random time series can be constructed using this
set of uniformly distributed random numbers. First, sub-
tract the mean value from each of the variates to obtain a

Zero mean process, with all values between - % and % .

Construct the time series, x(t), by assuming that each of

the variates, Xj gccurs at intervals At apart, and that

the value of x(t) is a constant for the period at. This
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produces a random time series x(t), which is a piecewise
continuous function of time as illustrated in
Figure I.2.1. If each number generated, Xj: is statisti-
cally independent and therefore uncorrelated with other
numbers in the sequence, then the autocorrelation function

of x(t) can be determined as

Rx(r) = E [x(t)x(t+2)]
At
= [ x(t)x(t + 1)E(r)dt
(o) )
= o2 -1t (2.4)
SERRAICES 2

This autocorrelation function is plotted in
Figure I.2.2. Inevitable imperfections in the white-noise
properties of the random number generation process are
evident by the presence of some degreés of correlation for
|r| < At.

The corresponding power-spectral density of x(t) may
be obtained using the above autocorrelation function as

A -iwt
Sx(m) 2 / Rx(r) e dt

]
Q

2 At [11- COSmgt (2.5)
3 (wat)

which is also plotted in Figure I.2.2. If the interval,
At is sufficiently small (i.e., wAt << 1), relationship

(2.5) becomes approximately




33

2 2

Sylo) = 1z |

- T12
Note that if At is selected small enough, with respect to
the range of frequencies involved in the simulation prob-
lem, it may be considered that the process takes place on
the flat part of the spectral curve near ¢ = 0 (3). For

this situation the signal is approximately white-noise

with a constant spectral density of

- m7At (2.7)
Sx(w)

I.2.4 Filter Model

It was shown in Chapter 1 that each of the twelve
turbulence terms in the turbulence model can be approxi-
mated by an uncorrelated stationary random process. Each

term was given by an equation of the form

U + au = bw (2.8)
where u = instantaneous value of one of the turbu

lence terms, Vy,or Vx,o0r *+++ Vy,rs

w = nondimensional zero mean white-noise with
power spectral density S, = %é&

02 = turbulent velocity component :ariance

L = turbulence integral scale

Vy = mean wind speed

R = rotor disk radius.

a and b are given by Egs. (1.31) and (1.32). The desired

power spectral density of the turbulence velocity term is
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2
b Sy

. 2
S (w) = |G(jw) S = — (2.9)
u I I w a2 + m2

where G(s) is the transfer function between the input
white-noise, w and output turbulence velocity specified by
Eq. (2.8).

To generate a turbulence velocity term digitally let
us consider samples of the white-noise forcing function at
discrete times ty, ty, ..., ty. Following the procedure
outlined in (4), the solution to Eq. (2.8) at time t, .,

may be written as

Crel
U(tk+1) = ¢(tk+1' tk) U(tk) + I b¢(tk+l,‘[) W(T) dT
tx
and in an abbreviated form
Upel = Y * Wi (2.10)

¢ 1s the state transition matrix for the step tp to
trsys and Gk is the driven response at tx+1 due to the
presence of the white-noise input during the (ty, ty.;)
interval. Note that the white-noise input required in the
continuous model automatically assures that Gk will be an
uncorrelated white-noise sequence in the discrete model
(4).

From Eq. (2.8) the transition matrix is easily deter-
mined as

4 = e 38% (2.11)
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The variance of Gk is established by using the convolution

integral as

o- = E[w°] = | / g(u)g(v)Rf(u-v) dudv (2.12)
w o o

where gl-] unit impulse response

il (G(s)] = be 3t (2.13)

e

g(t)

and Rg[.] = autocorrelation function of the input white-
noise. The autocorrelation function of the input white-

noise can be established as
Rf[u-v] = E[lw(u)w(v)] = Sws(u-v) (2.14)

where S, is the power spectral density of the input.
Substituting Eqs. (2.13) and (2.14) in Eq. (2.12) and

carrying out the integration, the variance of Gk becomes

2 -2 bzsw -2aat
o2 = E[W’] = = (L-e ) (2.15)

€1

If the generated random signal x(t) with zero mean and

2

variance Ox

2
= ?7 is used to approximate w(k) at the time

intervals ty, tgr <tk and if

w(k) = cx(k) (2.16)

then the mean square of both sides is
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"
0
N
o]
-~
b
N

E[w?]

2 2 2
o

w

[}
Q
Q

-2aAty11/2
¢ = (2 (1 - TP (2.17)

Substituting Eq. (2.17) in Eq. (2.16) and using the result
and Eq. (2.11) in Eq. (2.10), gives the turbulence veloc-

ity term at ty., as

(1 - e-ZaAt)}l/Z % (2.18)

Upy =€ Yt T3 k

If the range of the random numbers, m, is 1 then Eq.
(2.18) can be written as

_ _—aat
Ug+1 = € U * {—

(1 - e”238%y1/2 x,  (2.19)

Evaluating the variance of the generic turbulence term

from Eq. (2.9) gives

2 2 1l
= E = = =
o [u®(t)] Ru(t 0) o -wf Su(w)dw
2
2 _ b Sw
% 2a

Taking the mean square of both sides of Eg. (2.19) gives

an identical result.
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x(t)

Ot t

X6

X1

L X3

Figure I.2.1. Time series constructed from a sequence
of uniformly distributed random numbers.



(a)

(b)

Figure I.2.2. (a) Autocorrelation function, and

(b) Spectral density function for
the constructed time series.
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CHAPTER I.3 DIGITAL COMPUTER IMPLEMENTATION

I.3.1 1Introduction

In this chapter the computer code for digital simula-
tion of turbulence velocity components is discussed. The
program is written in Fortran V on the CDC Cyber 170/720
series. It is designed in a block-structured form so the
various tasks performed within the program are essentially
separate routines and are linked together by an executive
main program. It is run interactively but can be run in a

batch mode with some prior preparation of response data.

I.3.2 Input Data

A list of the input variables is given in
Table I.3.1l. The user has the opportunity to change any
of the input variables listed in Table I.3.1 at execution
time. When a run is completed the program allows the user
to either end execution with the current data set, recycle
the current data file with different values for the input

variables, or employ a new data file.

I.3.3 Computer Algorithm for Turbulence Simulation
It was shown in Chapter 1, Egs. (1.28) and (1.29),
that turbulence velocity components can be given in polar

coordinates in the following form:
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Normal Velocity

Vy (r,p,t) = Vy'o + Vy'x (rsiny) + Vy’z (rcosy)
2 _ R 2
* Vy,rr (x% = 3) + Vy,ro (F7COS2y)
+ v (r2sin2y) (1.28)
yors

In-Plane Velocities

Ve (Erpst) =V, o+ (;zx = Yy4) FCOSY + (sz - €,,) rsiny
(1.29)

v, (xey,t) =V, + (Yzg * Yzg) TSinw + (e, + €, ) rcosy

where each turbulence term (Vy,or Vi,0r soer Vy,rs) is

given by an equation of the form

(v

Yr'] + aVv = bw

Yoo

QaIQ.-
o

with a and b given by Egs. (1.31) or (1.32).

The simulation routine SIMULX generates the appro-
priate a and b coefficients based on the given input data
and the curve fitting contained in subroutine ATMOS. The
procedure for obtaining these coefficients is described in
Section 1, and the regression method is described in
Appendix I.A. Next, the subroutine TURBS actually simu-

lates the velocity fluctuations by first calling RANDOM to
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generate a white noise time signal as discussed in
Section 2.3. This signal is then filtered using
Eq. (2.16) to obtain the twelve turbulence parameters of
Table I.1l.2, Vx,o' Vy,o' Vz,o' Vy,k' etc. The values of
these twelve turbulence parameters are then substituted

into Eqgs. (1.28) and (1.29) to obtain the resulting

velocity fluctuations, vy, Vy, and vz’ at any desired
radial station for the current time. As the procedure
marches forward in time, the blade moves to a new azimuth
angle and subroutine TURBS is called again to repeat the
procedure. A flow chart of this process is shown in
Figure I.3.1 for the executive program SIMULX, and Figure
I.3.2 shows the flow chart for subroutine TURBS.

The number of points along the blade at which turbu-
lence velocity is evaluated is givén as the parameter,
NPTS, in the program SIMULX, and can be easily changed.
The turbulence velocity components then are computed at
equally spaced points along the blade from an initial
radius to a final radius which the user specifies. For
the results presented here, only one radial position at
the tip was considered (NPTS = 1). As much as possible,
the code has been written to contain its own documentation
through extensive use of comments within the program.

Appendices C through F include a complete program
listing, a sample input data file, a procedural example of

the interactive features, and the results of the sample
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run as observed from the tip of a Mod-0A wind turbine

blade.

I.3.4 Tool Kit for Signal Analysis

Analysis of random signals requires some basic mathe-

matical tools. There are two general methods of describ-
ing random signals mathematically. The first, and more
basic, is a probabilistic description in which the random
quantity is characterized by a probability model. How-
ever, it tells very little about how the random signal
varies with time, or how the amplitude varies as a func-
tion of frequency.

For this work dealing with atmospheric turbulence it
is helpful to use some of the typical statistical measures
to charactrize the wind signal using the mean, variance,
correlation function, and spectral density. These mea-
sures allow the signal which is being simulated to be
compared with various theoretical models and with experi-
mental data. This is essential because when comparing
wind turbine responses generated using a simulated wind
with responses obtained from field test measurements the
comparison must be made for the "same" atmospheric condi-
tions. This means that the mean, variance, and spectral
density for the simulated wind should match those of the

real atmosphere during the field test period. The tools
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for computing these statistical parameters are discussed
in this section.

Subroutine MEANVAR estimates mean and variance of a
time series. Since each of the turbulence velocity com-
ponents is computed by low pass filtering of a uniformly
distributed white noise time series, it is expected that
the resulting turbulent velocity fluctuations will have
nearly a Gaussian distribution (l). To estimate the
actual distribution subroutine ROB constructs a frequency
histogram which can be compared with the standard normal
distribution.

Subroutine PSD generates spectral density estimates
of the generated velocity signals. It uses a fast Fourier
transform (FFT) algorithm to calculate discrete Fourier
transforms (DFT) (2). A cosine tapered data window is
used to smooth the data at each end of the record before
it is analyzed (which has the effect of sharpening the
spectral window). In order to improve the accuracy of the
results, the signal is broken into a number of segments
and the spectral estimates for each segment are computed
and then averaged for all segments at each frequency. A
more detailed discussion of the digital signal analysis is
given in Appendix I.B.

In order to obtain accurate estimates of the spectral
density, relatively long sequences of random velocities

are needed. The length of each of the time series seg-
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ments in the code is set by the parameter LSPECT, which
hae been arbitrarily set equal to 128 in a parameter
statement. It can easily be changed but must always equal
an integer power of 2 for the FFT algorithm to work pro-
perly. The user specifies the number of random velocities
generated as the input parameter, NRVELOC. The user can
choose any size up to 6500, the dimension size of the
array. Note that if NRVELOC is not evenly divisible by
the segment length, LSPECT, then an appropriate number of
zeros will be added to each time series. This might make
the length of the time series exceed the declared array
size for the velocity components. To avoid this, NRVELOC
should be kept smaller than the velocity time éeries array
size minus LSPCT, (currently NRVELOC < 6500 -128).

Because of larger array sizes it might not be feasible to
run this program interactively on some computers. There-
fore, modification may be required depending on the needs

and resources available to the user.
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Table I.3.1. List of Input Variables.

CONST constant coefficient in the power residue
algorithm (subroutine RANDOM) for generation
of uniformly distributed random numbers

DELTAT time step interval for generation of random
velocity components (sec)

DIVIDER module used in function (mod) (.) in the
power residue algorithm (subroutine RANDOM)

SEED initial random number used in the power
residue algorithm (subroutine RANDOM)

NRVELOC number of elements of random turbulence
velocity component sequences

OMEGA rotor speed (rpm)

OMEGAZ initial angular orientation in the rotor
disk plane (deg)

ROTR rotor radius (feet)

RRATIO ratio of radial position to blade radius

TI turbulence intensity (%_ in percent)

TL turbulence integral scale (feet)

VRANGE number of standard deviations displayed for

the turbulent velocity probability density
function (usually selected to be 3)

Vw mean wind velocity (mph)




PROGRAM SIMULX

( START )

INPUT

Generate Atmospheric Coefficients
CALL ATMOS

Generate Random Velocities '\

Loop: 1 .- NRUELOC f

Calculate Mean and Variance
CALL MEANVAR

Evaluate Probability Density
CALL PROB

Calculate Spectral Density
CALL PSD

CALL PLOTLOG

Y A New Data N

CALL

TURBS

CONTINUE

( STOP )

Figure I.3.1. Flow chart of the program SIMULX.
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SUBROUTINE TURBS

( START )
Construct Filter Parameters
Loop: 1, NWCOMP

CONTINUE
Construct Turbulence Velocity
Terms Vy,o, Vx.o, eee
by the Corresponding Filters
LOOP: 1, NWCOMP
CONTINUE

Compute Turbulence Velocity Components,
Ve Vyr v, at Different Radial Positions

for Current Azimuth Angle and Time Interval

LOOP: 1, NPTS

( RETURN )

Figure I.3.2. Flow chart of subroutine TURBS.
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Ibid, Appendix 2.

49



50

CHAPTER I.4 SIMULATION RESULTS

I.4.1 Introduction

This chapter presents some typical results obtained
using the computer code to simulate the turbulence inputs
for wind turbines. Simulation results are presented for
two wind turbine sizes. The first turbulence simulation
is for the Mod-0A, 200 kW wind turbine, which has a rotor
diameter of 125 ft. The spectral density of the simulated
turbulence is compared with field test data taken from the .
vertical plane array experiments of George and Connell
(1), for similar wind conditions. In addition, the
results are compared with the theoretical Von Karman spec-
tra for the atmospheric boundary layer. The second simﬁ-
lation is for a Mod-2, 300-ft diameter wind turbine. 1In
this case, there is no appropriate test data which can be
used for comparison, but a comparison is made with the Von

Karman spectrum for the longitudinal velocity component.

I.4.2 Comparison of Simulations

Figure 4.1 I.shows the simulation time series of the
longitudinal velocity component, Vy, as observed from the
tip of a rotating Mod-0A blade. 1In this simulation, the
tip radius was taken as 62.5 ft and the rotor speed was
40 rpm. In addition, the parameters used for the turbu-
lence simulation where V, = 26.25 ft/s, o¢/V, = 0.10 and

the turbulence integral scale, L, was 400 ft. 1In
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Figure I.4.1, the mean wind speed has been removed.
Figure T.4.2 presents the spectral density for the time
series shown in Figure I.4.1. The simulated spectrum
clearly shows the spikes at 1 and 2 cycles per rotor revo-
lution that are the result of rotation of the blade
through the wind turbulence field. However, the simula-
tion results show no spikes higher than 2 cycles per revo-
lution because the model only allowed for velocity fluctu-
ation harmonics up to sin2y and cos2y as indicated by
Eq. (1.28). The data taken from the vertical plane array
is plotted showing harmonics up to 3 cycles per rotor
revolution, but higher harmonics are present in the origi-
nal presentation by George and Connell (l). The simula-
tion results show considerably greater spectral energy in
the frequency range of .1 to .3 hz than the VPA results.
This is probably because the a* an b* coefficients used to
generate the simulation were selected so that the Von
Karman spectrum would be approximated in the low frequency
range. As is shown in the figure, the comparison with the
Von Karman spectrum in this frequency range is quite
good. It would be possible to more closely approximate
the vertical plane array data by adjusting the a* and b*
coefficients for the Vy , term of Eq. (1.28). In addi-
tion, it would be possible to add additional harmonics to
the model in order to obtain the 3 and 4 cycles per revo-

lution spectral spikes, but that would involve a signifi-
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cant effort. It is hoped that some experience with the
implementation of the existing model in a dynamics code
could be obtained, before attempting to improve the simu-
lation, and account for these additional effects.

Figure I1.4.3 shows the probability density function
for the time series of the Vy turbulent velocity fluctua-
tions. As can be seen from the figure, the simulated
velocity fluctuations closely approximate a Gaussian dis-
tribution.

Figure I.4.4 is a spectral density plot for the ver-
tical velocity component, Vzs as provided by the simula-
tion. The Von Karman spectrum for this turbulence compo-
nent is also provided for comparison. The simulation is
for the case where the turbulence is observed from the tip
of a rotating Mod-0A blade. Whereas the Von Karman spec-
trum plotted is for a point fixed in space. The simulated
spectrum shows a single spike at a frequency of 1 cycle
per rotor revolution. Theoretically there should be many
of these spikes each at a multiple of the rotor blade
passage frequency. However, the simplified simulation
model, Eq. (1.29), for the in-plane velocity components
includes only the first harmonic. No field data is avail-
able for comparison of the in-piane velocity components.
The simulation spectrum for the lateral velocity component
was virtually identical to the results for the vertical

component and therefore has not been presented.
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Figure I.4.5 shows the probability density function for
the time series of the V, velocity fluctuations, and the
figure shows the distribution to be approximately
Gaussian.
Figure I.4.6 is the spectral density plot of the
longtidinual velocity component, Vyr for a simulation run

for a Mod-2 sized turbine. In this simulation, the mean

wind speed was V,, = 32.15 ft/s, o/Vy = -061 and the turbu-
lence integral scale was taken as 500 ft. The velocity
field was simulated at two radial locations along the
rotor blade. One was at 30% span and the other was for
the 70% span location. This illustrates one of the con-
venient features of this turbulence model. At each time
step, the velocity fluctuations at all radial locations
are obtained simultaneously, as can be seen by the form of
Eq. (1.28). Figure I.4.6 includes the Von Karman spectrum
for comparison. Figure I.4.7 shows a probability density
plot for the velocity fluctuations at 70% span. Unfortu-
nately, there is no appropriate test data with which to
compare these simulation results a the Mod-2 sized

turbine.
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I.4.3 Concluding Remarks

The authors offer the following conclusions and

remarks on the basis of the work presented in this report:

1.

The results presented here show that the
turbulence simulation model does a reason-
able job of representing many of the fea-
tures of atmospheric turbulence.

The turbulence simulation model presented
here does not model the spectral spikes in
the wind input above 2 cycles per rotor
revolution. If these spectral spikes at
higher harmonics turn out to be important
for cyclic load prediction then this model
will be incomplete. It should be noted
that this model does contain some spectral
energy at the higher harmonics of rotor
speed; it is the effect of rotating through
the turbulence structure that is missing at
the higher frequencies.

The great advantage of this model is its
simple structure and fast computation
speed. This simulation model will not
significantly increase the complexity of a

wind turbine dynamic model.

The authors hope that in the near future, this model will

be used to generate inputs for a structural dynamic model,
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so that its usefulness in predicting cyclic loads can be
assessed. Ability to predict cyclic loads reasonably well
for a small computational cost is the ultimate goal, and
this simulation approach seems to offer promise of achiev-

ing that goal.
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I.4.4 Reference

Wind Characteristics and Correlations with MOD-0A

Wind Turbine Response, Pacific Northwest Laboratory

Report PNL-5238, September 1984.
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CHAPTER II.l. TURBINE MODEL

II.1.1 Description of the Turbine Model

The turbine model and the computer code used in this
work were originally developed in a previous project (1)
at Oregon State University. The model is for the single-
degree-of-freedom flapping response of an individual wind
turbine blade. It accounts for the blade bending deforma-
tion about the smallest blade inertia axis. The rotor is
assumed to rotate at a constant speed, and the hub is
allowed to move in a prescribed yawing motion. Rotors
that are tilted and yawed relative to the mean wind direc-
tion can be accommodated in a straightforward manner.

The model and the computer code are designed to oper-
ate with aerodynamic mddels of varying sophistication.

The model includes the effects due to the mean wind, wind
shear, tower shadow, and turbulent fluctuations.

Figure II.l.l shows the orientation of the turbine
blade under analysis with all the intermediate coordinates
required to represent the blade motion. The capital X,Y,Z
coordinates are the fixed reference system. The mean wind

velocity at the hub, Vpyps and its fluctuating components,

6Vys 8Vy, and §V; are given in this system. The rotor
spin axis is allowed to tilt through a fixed angle x and
also to have a prescribed time-dependent yawing motion

given as ¢(t), where ¢ is the yaw angle. The yaw axis is
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coincident with the Z coordinate axis. The hub, located

- ol £famm +ha vawr awvie
«K Ao b -aa My 4D -

.
m the y is

at a dista ; is considered
rigid and to have some radius h. The flexible portion of
the blade begins at the outer hub radius, h. The airfoil
shape may begin at h or at some position further out along
the blade z axis. The blade is coned at some angle 8, as
shown in the figure.

The x,y,z coordinates are located in the surface of

revolution that a rigid blade would trace in space, with

the y axis normal to this surface. The Xp:¥ps2p are the

blade principal bending coordinates, where the zp axis is
coincident with the elastic axis of the undeformed blade.
Bending takes place about the xp coordinate. It is fur-
ther assumed that the blade principal axes of area inertia
do not change along the zp axis. The influence of blade
twist on bending displacement is neglected. The orienta-
tion used to set tht:z angle ¢, for computations is the
principal axis near the blade tip, because the deformation
is largest there. The final coordinate system is the
n.z,¢ system which is on the principal axes of the
deformed blade at some point along the elastic axis.

The rotor blade flapping motion is represented by a
set of coordinate shape functions that are in the form of
simple polynomials. Four functions are included in the
computer code, but any number of the functions can be

used, from only one up to a maximum of four. At present,
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only cantilever blade attachment conditions have been
implemented in the code. Thus, for the results presented
in this report, the flapping motion is represented with
only one coordinate function (i.e., one flap degree of
freedom).

Application of the laws of Newtonian mechanics allows
the development of the equations of motion for the rotor
blade. Reference (1) presents the details of this devel-
opment and further outlines a solution procedure called
"Galerkin's method," which reduces the flap motion equa-
tions to a set of ordinary differential equations in terms
of the blade tip modal displacement, sy,

The model operates in the time domain, and the blade
acceleration equation is integrated via a modified Euler
trapezoidal predicfor-corrector method. Results of the
blade loads analysis are printed in tabulated forms for
equidistant points along the blade length and equidistant
azimuths around the rotor disk. They include the blade
deflection, slope, and velocity, the flapwise shear and
moment, edgewise shear and moment, and blade tension and

structural torque at the root of the blade.
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I1.1.2 Reference

ll

Thresher, R.W., Hershberg, E.L., Computer Analysis of

Wind Turbine Blade Static and Dynamic Loads, Oregon

State University, Dept. of Mechanical Engineering,

Report RFP-76824, March 1984.
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CHAPTER II.2. CONTROL MODEL

II.2.1 Introduction

The objective of the control model is to regulate the
output torque by changing the pitch angle of the wind
turbine blade. The blade pitch angle remains fixed in the
computation of average torque values for each revolution
which does not permit a continuous control action to be
implemented. Therefore, a discrete control model with a
time interval equal‘to the period of one rotor revolution
is chosen. The control is only active after each revolu-
tion and is, therefore, relatively slow. Thus, a torque
step response with a small overshoot which reaches steady
state in a minimum number of steps is desirable. A con-
trol action which compensates for the flaéping oscillation
is also required. To achieve this goal, an integral con-
trol action is combined with a digital narrow band rejec-
tion filter. The integral control action eliminates the

steady error in the resulting torque response.

I1.2.2 Development of the Transfer Function

For control purposes, the blade is modeled with one
degree of freedom in the flap direction and its equation
of motion is a nonlinear second order differential equa-
tion. The transfer function between the input blade pitch

angle and the output torque is approximated by a general
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second-order linear model. The blade torque response to a
step change in the blade pitch angle in the absence of
other inputs (gravity, turbulence, wind shear) is obtained
using the simulation program and is compared with the
approximate torque step response using the linear model.
The parameters of the approximate response are adjusted so
that it closely fits the blade torque response. Having
determined the parameters of the approximated torque
response, the transfer function between input pitch angle
and output torque is determined for small perturbations
from a nominal condition. The present analysis was done
for a rotor speed of 72 RPM, wind speed of 18.5 mph, and
blade pitch angle of 3 degrees. This nominal condition
‘corresponds to a power of 9.72 kW for the three-bladed
rotor. Figure II.2.1 shows the‘power curve for the tur-
bine. The nominal point is at the beginning of power
regqulation. The turbine torque step response was obtained
for step input changes of 0.5 and -0.5 degrees in nominal
blade pitch angle. The response for each case showed
similar frequency and damping but the magnitudes of their
amplitude and phase were different. Figure II.2.2 shows
the turbine and approximated torque step response for each
case. The parameters of the estimated torque response for
both cases were then averaged and an average estimated

turbine transfer function was obtained as
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b,s + b

1 2
T(S) = TQo + 52 " 2;mns " wi
b,s + b
= 1% * 1T +lad E fmd)) (€1
where
TQ, = ~1.311 ft-1b/deg
b, ; 75.854 ft-1b/dege.sec
| b, = -3741.164 ft-lb/deg-sec?
i z = .0393
} wp = 25.869 rad/sec
og = twp = 1.017 rad/sec
wg = w, /1 - g% = 25.849 rad/sec

and the notation ((.)) denotes the product of two complex

conjugate terms.

II.2.3 Development of the Controller

Figure II.2.3a shows the block diagram of the turbine
and control model. The system consists of the wind tur-
bine and the averaging process. The transfer function of
the wind turbine is given as

bls + b2

(s ¥ o5 £ Jug)) (Ce))

Tt(s) = TQO +

The transfer function for the averaging process is de-

veloped in Appendix II.A and is
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12
T (s) =
° Tzs2 + 6Ts + 12

where T is the period of one rotor revolution and it
equals 5/16 sec. The turbine has a frequency bandwidth

1.1017

with limiting frequency corresponding to ag4
rad/sec and damped frequency of wgy = 25.849 rad/sec com-
pared to o4 = % = 3,6 rad/sec and wg = /% = 2,078 rad/sec
for the averaging process. The averaging process thus has
a higher frequency bandwidth (smaller time constant) and,
therefore, will not be considered in the development of
the control model.

The control is only active after each revolution and
is, therefore, relatively slow. Thus, a torque step
response with a small overshoot which reaches steady state
in a minimum number of steps is desirable. To achieve
this, a proportional feedback for fast response and an
integral action to eliminate the steady state error are
first tried.

The blade pitch angle remains fixed in the evaluation
of average torque values for each revolution. Therefore,
the control model is developed in the discrete time domain
with a time interval equal to the period of one rotor
revolution. Figure II.2.3b shows the system block diagram
with a zero order hold and a sampler to perform the
digital/analog conversion of the input and output signals

to the turbine, respectively (1l).
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The method of root locus is used to design the con-
trol algorithm. The gain values are chosen such that the
closed loop transfer function is stable and meets the
desired performance criteria. The gain of the proportion-
al feedback loop, ki, is chosen first and then using this
value, the gain in the integral control action, k3, is
selected. For stability and better performance the gains
are chosen so that the poles of the closed loop transfer
function are inside the unit circle and near the origin
(2,3).

Figure II.2.3c shows the discrete block diagram for
the system. Gg(2z) is the z-transform for the turbine
transfer function, zero order hold, and sampler, and is
given as (Appendix II.B)

2

c(z) sz + Clz + Co

D(z) i 22+D

G (2) =
t
lz + Do

where the coefficients in polynomials C(z) and D(z) are

obtained as

Cy = =1.300 ft-lb/deg D; = 0.782
C; = -8.251 ft-1b/deg D, = 0.184
Co = —-4.014 ft-1lb/deg

Substituting for the coefficients in the transfer

function, it can be written as

(z + 0.531) (z + 5.815)

Gy(z) = (-1.30 ft-1b/deq) {77 7 0.391 % 10.176))
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Figure II.2.3d shows the location of poles and zeros
of the turbine transfer function.
From Fig. II.2.3c, the transfer function for the
inner feedback loop with proportional gain k, between
output torque, TQ(z), and input control, U(z), is obtained

as

G, (z) = 222) . Be )
1 U(z) 1 + let(z)

The root locus of G;(z) for negative values of gain

is shown in Fig. II.2.3e with k; given as

e
|

- D(z)
l—(l)mz
((z + 0.391 £ i0.176))
(z + 0.531) (z + 5.815)

(0.769 deg/ft-1b)

The poles of the transfer function become unstable
(|z] > 1) for k; < - 0.67 deg/ft-1b.

The overall closed loop transfer function of the
system shown in Fig. II.2.3c between output torque, TQ(z),

and reference torque, TQ,, is given as

olzy = T2z K226 (D)
TQr(Z) (z - 1) + kzzGl(z)

Figure II.2.3f shows the root locus of the system
closed loop transfer function for gain k; = 0.0 and -0.1

deg/ft-1b with gain kz given as

(_1) (Z - l) D(Z)

k ZC(zZ)

2

iy (z - 1)((z + 0.391 % 10.176))
(0.769 deg/ft-1b) ~“— =Ty (7 + 5.815)
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Figure II.2.3f shows that the poles of the closed
loop transfer function can easily become unstable for
small values of gain kj. Also, since the poles are away
from the origin, it will take many steps for the response
to reach steady state which is not desirable.

An alternative to the proportional feedback is to
trap the complex poles corresponding to flapping motion by
introducing a pair of zeros with the same coordinate
values in the z-plane. Figure II.2.4a shows the block
diagram of this model.

The transfer function for the inner feedback loop

with gain kj between output torque and input control is

given as
G,(z) = Tolz) , _ Bt
1 U(z) 1 + K, F(z) G_(z)
1 t
where
2
c (2) = C(z) _ Cyz™ + Cyz + C
t D(z) 2
z + Dlz + Do
and
D(z) 22 + Dlz + Do
Flz) = —5= = 3
z 2

Figure II.2.4b shows the root locus for G;(z) where

gain kj is given as

z2D(z)

ky = (-1) 5z ¢c(zy

22

(0.769 deg/ft-1b) T——57531) (z + 5.815)
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From Figure II.2.4a the closed loop transfer function
between output torque, TQ(z), and input reference torque,

TQ,, is given as

Gz - T2 2" T 7
TQr (z -1) + kzz Gl(z)

Figure II.2.4c shows the root locus of the closed
loop transfer function for gain k; = -0.1 deg/ft-1lb where
k, is given as

2

(z - 1) D(z) [z + le(z)]

k, = (-1)

z3C(z)

(0.769 deg/ft-1b)

(z-1) ((z+0.391+i0.176)) ((z+0.365+i0.471))
z3(2+0.531) (z+5.815)

In order to keep the system closed loop transfer
function poles near the origin, the pole on the right half
circle was chosen at z = 0.5. The corresponding value for
gain ky is =0.4275 deg/ft-1b which makes the system un-
stable. Since the average transfer function was derived
for one nominal condition, other operating conditions may
not give the required pole and zero cancellation resulting
in possible instability of the system.

As was shown, the poles of the closed loop transfer
function can become unstable for small values of gain

ky;. To make the system more stable and also keep the
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poles of the system closed loop transfer function near the
origin, gain k, is set to zero and a new controller is
introduced in the forward loop. It is a proportional plus
integral control which filters out the effect of the poles
of the turbine transfer function (notch filter). Figure
ITI.2.5a shows the block diagram of the system and the
controller. Pole z = p is selected such that the poles of
the closed loop transfer function are located at the
origin (dead-beat control). The system closed loop trans-
fer function between ouput torque, TQ(z), and input refer-

ence torque is given as

G,(z)
= I0(z) _ 1
G(z) To, T+ 6 (2)

where

= RKD(z)
G, (z) Zz -1 (z=-p %(2)

and

= C(2z)
Gt(Z) Dlz)

Substituting and cancelling common terms G;(2) becomes

= RKC(z)
6,8 =D ==
and
= RKC(z)
G(z) = (z =-1) (z - p) + RC(2)
K[sz2 + Clz + zo]

2
(KC2 + 1)z° + (KC1 -p - 1)z + (KCo + p)
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Poles of the closed loop transfer function are located the

origin provided

KCl -p-1=0
KCo +p=20
or
-Co

p = =—2_ = -0.32727
Co + C1

K = & i = = -0.08153
o 1

where Cy and Cy are the coefficients of the numerator of
the turbine transfer function. Figure II.2.5b illustrates
the root locus for the closed loop transfer function where

K is given as

_ ) (z = 1) (z + 0.32727)
K = (0.769 deg/ft-1b) =r—47531) (7 + 5.815)

The closed loop transfer function of the system then

becomes

2
K (sz + Clz + Co)

G(z) = 3

(1 + KCZ) z
Figure II.2.5c demonstrates the location of the poles
and zeros of the resulting closed loop system transfer
function.
To investigate the stability of the control systenm,
the turbine transfer functions obtained for positive and

negative step about the nominal condition are used instead
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of the average transfer function. Figure II.2.5d shows
the location of zeros and poles for each case. Both cases
are stable and only the case for positive step demon-
strates slightly oscillatory behavior. Figure II.2.6
shows the torque step response to a unit step change in

reference o torque for each case and the average model.
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Power regulation
10- 4

Fixed pitch

Power (kW)

©® » o o

o 10 20 30 40
Wind speed (mph)

Figure II.2.1l. Power regulation curve.
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! T TIME C3EC)

TORQUE CFT - LB)

TORQUE CFT - LB

TIME CSECO

(b)

Figure II.2.2. Transient torque response to step change
in pitch angle: a) =-0.5 deg pitch change,
b) +0.5 deg pitch change.
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K2—zz:1 Ge(2) -

Figure II.2.3c.

System discrete time block diagram.
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@ Zero

-6

Figure II.Z2.3d.

V=3 -16 T

turbine blade transfer function.
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Location of poles and zeros of the wind

Figure

II.2.3e. Root locus illustration of the system
inner loop with proportional feedback

controller.
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dim

x2=-o.2543{
\f‘ + G- >
-2

- -1\ 1 Re
(a)
A im
——O - * * [(j::”—- —
=6 =V \ 1 Re

Figure II.2.3f.

(b)

Root locus illustration of the system
closed loop transfer function for gain

a) k1 = 0.0, b) kl = -0.1 deg/ft-1b.
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Ko—= G¢(2)

K1!§§l"

Figure II.2.4a. Discrete block diagram of the wind
turbine blade and notch filter feedback
controller.




Figure II.2.4b. Root locus illustration of the system
inner loop with notch filter feedback
controller.

K2=—0.1893

s Vo T Re

Figure II.2.4c. Root locus illustration of the system
closed loop transfer function for gain

k, = -0.1 deg/ft-1b.
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TQ, <+ K D( TQ(
L Ge(2) = 1) (Z-p) (zz-)b) —-‘-IGt(Z) =§:)) —z)--

Figure II.2.5a. Discrete block diagram of the wind
turbine blade and notch filter feedback
controller with integral action.
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smaan |_d

K =-0.08153

K =—0.4577

e -5 A I S— 1 Re

Figure II.2.5b. Root locus illustration of the system
closed loop transfer function with
notch filter and dead beat controller.

‘Im

-%@ _:5 \/\ _'Lz _16 1 —Re

Figure II.2.5¢c. Location of poles and zeros of thg.
' system closed loop transfer function.
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Figure II.2.5d. Location of poles and zeros of the
system closed loop a) positive step
transfer function, b) negative step
transfer function.
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© Average

TA(K)| @ Positive step

& Negative step
2
&
°
4
-

0+ . r v .
0O 2 4 6 8 k
Number of revolutions

Figure II.2.6. Torque step response to a unit step
change in reference torque.
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CHAPTER II.3. IMPLEMENTATION OF THE CONTROL MODEL

II.3.1 Controller Implementation
Figure II.2.12 shows the wind turbine discrete feed-
back control model developed in Chapter II.2. The control

action and wind turbine transfer functions are given as

2
Ch,z” +# C,z + C
Gt(z) - TQ(z) _ 2 1l o

Q(z) 22 + D

lz+Do

2
G (2) = 6(z) _ K{z" + D;z + D]
c e(z)  (z -1) (z - p)

Applying the control action, the regulation algorithm is

obtained as

8(i) 8(i - 1) + Re(i)

e(i) pe(i - 1) + e(i) + Dle(i - 1) + Doe(i - 2z)

where
e(i), e(i - 1), ... current and previous values of
the output error
e(i), e(i - 1), ... filtered control error
8(i), o(i - 1), ... pitch angle command to actuator
Do' Dy, P constant control parameters
K control gain
The wind turbine torque was evaluated by calculating the
total moment of all loads acting on the turbine blade

about the axis of rotation (l). Turbulence velocity in-
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puts to the wind turbine simulation code were generated
using the results developed in Section 1. Only uniform
and gradient turbulence terms were considered.

Table II.3.1 demonstrates the control action logic
implementation to control the output torque of the tur-
bine. The control can be turned on or off and turbulence
can be generated for different wind conditions. For this

analysis a turbulence length scale, T;, of 250 ft and an

intensity ratio, Ty, of 15% are used.

In testing the control algorithm, it was determined
that the static open loop gain of the wind turbine blade
between the output torque and the input wind velocity
varies substantially with wind speed. A static sensitiv-
ity analysis of the turbine at the nominal power output
was conducted where changes in torque for a step change §f
0.5 and -0.5 degrees in pitch angle from the pitch angle
corresponding to the nominal torque were obtained for
different wind speeds. Figure II.3.1 shows the results
which demonstrates higher static gain at higher wind speed
and, therefore, larger response which may cause instabil-
ity of the system. The control action gain was then modi-
fied using a cubic polynominal fit of the static sensitiv-
ity data to maintain an overall constant gain at different
wind speeds.

The modified regulation algorithm then becomes

0(i) = o(i - 1) + K*e (i)
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e(i) = =0.327 e(i - 1) + e(i) + 0.782 e(i - 1)

— 0.184 e (i - 2)

-0.08153 Deg/Ft-1b

K*
vV 3 V 2
9,80 (v-; - 47,02 (-‘G + 83.87 (

V 2
VN

A =
N - VNOMINAL = 18.5 MPH
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Table II.3.1l. Control Algorithm Logic.

IF (OLD PITCH = FIXED VALUE) THEN
IF (OUTPUT > REFERENCE)

NEW PITCH

REGULATED VALUE
ELSE

NEW PITCH FIXED VALUE

ENDIF
ELSE
NEW PITCH = REGULATED VALUE
IF (NEW PITCH < FIXED VALUE) THEN
NEW PITCH = FIXED VALUE
RESET REGULATION
ENDIF

ENDIF




97

‘spoads putm 3uUsaI9IITP I0J uteb Toxjuod yo3ztTd OT3E3]S

SS
1
r

es
4

(0dS/Ld) AdIAAS ANIM
Sy "} 4 mm et
|

*T1°€°II @anbtyg

S
i

ec

QOﬁumexoummm TetTwoudtod x9pIO0 PATYL -
ejep UOTIeTNUIS O

(93q/97T-1d) NIVD DILVYLS




98

II.3.2 Reference

1. Thresher, R.W., Hershberg, E.L., Computer Analysis of

Wind Turbine Blade Static and Dynamic Loads, Oregon

State University, Dept. of Mechanical Engineering,

Report RFP-76824, March 1984.




99

CHAPTER II.4. RESULTS AND CONCLUSIONS

The wind turbine response to step change in torgque
for two winds speeds without turbulence were obtained.
Figure II.4.1 shows the torque response and corresponding
blade pitch angle correction for 20% reduction in nominal
torque at 20 mph wind speed. It is seen that the system
reaches 99.5% of the steady state torque in eight revolu-
tions (9.6 sec) with maximum overshoot of 2% which is well
within the defined initial objectives for the controller.
Similar results for 35 mph wind speed are shown in Fig.
II.4.2 which demonstrates similar characteristics. The
controller is shown to be stable at both ends of the
operating range. Instantaneous single blade torque for
fixed pitch (no control) and with active control for 20
mph wind speed are plotted in Figs. II.4.3 and II.4.4.
Average single blade torque over each revolution for 12
revolutions for each case is shown in Fig. II.4.5. Simi-
lar results for 35 mp wind speed are demonstrated in Figs.
11.4.6 to 1I.4.8. Table II.4.1 summarizes the statistical
characteristics of the blade torque response in the turbu-
lence for 20 mph and 35 mph wind speed. For the 20 mph
wind speed, closer mean torque response to the reference
torque of 324 ft-1lb and smaller standard deviation are
achieved with active control than with fixed pitch. The
mean torque response is also maintained closer to the

reference torque for the 35 mph wind speed. However, a



100
higher standard deviation resulted in this case which is
directly related to the control action being implemented.
Since the variance of the input turbulence in the model is
large for 35 mph wind speed and turbulence intensity of
15%, a slow controller which is only active after each
revolution could allow large deviations in instantaneous
blade torque from the mean torque and, therefore, a large
standard deviation. A faster controller which can correct
the blade pitch angle more often than-once every revolu-
tion will reduce extreme fluctuations of the blade torque.
These statistics were compiled for 12 revolutions or 9.6
sec and a longer run stream is required to more precisely
estimate these results. However, every run of the model
costs about 200 cpu sec so this task is left as a future

expansion of this work when more funding is available.

CONCLUSIONS

A discrete-time control algorithm is used to regulate
the output torque of a wind turbine by changing the pitch
angle of the turbine blade. The method is suitable for a
wide class of pitch regqulated turbines. The algorithm
works well in conjunction with turbulence inputs. Torque
response fluctuations for high wind speeds are excessive
and a faster controller can help to reduce that. Also,
further testing on a real machine is required to verify

the present analysis.
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Table II.4.1. Single Blade Torque Response in
Turbulence.

Turbulence Intensity = 15%

Reference Torque = 324 ft-1b

20 mph 35 mph
Torque Fixed Active Fixed Active
(ft-1b) Pitch Control Pitch Control
Average 330.0 324.1 337.8 330.5

St. Dev. 17.0 13.9 33.0 48.9
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APPENDIX I.A LINEAR LEAST-SQUARES REGRESSION (1)

For the general regression problem, the form of the

relation

y = f(x,a) (A.1)

where: X independent variable

a vector of parameters
y = dependent variable

is known and it is desired to determine the vector of

parameters, a, when several data points (xj-« yi) are
given. In the case when the parameters appear linearly,

i.e.,
Y = a;fi(x) + a,f (x) + oo + a f (x) (A.2)
the data parameters form a set of linear equations given

by

!

541 fj(xi)aj = vy. i=1,e0e,m (A.3)

i
When there are more data points than unknown param-
eters (i.e., m > n) the equations are overdetermined and
it is unlikely that all equations can be satisfied
exactly. When m < n the equations are underdetermined and
many different sets of parameter values can be found which

fit the data exactly. To determine a reasonable solution
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to the problem, the parameters can be chosen to minimize
the sum of the squares of the residuals, i.e.,

T 2

Min, 1 (¥; - £(x;,a)) (A.4)
i=1

It can be shown (2), in the case when the data are

given exactly by
y; = F(x,a,) + e (A.5)

where ax are the true parameters and e; are mutually
independent random errors which are normally distributed
with zero mean, that the least-squares solution is equiva-
lent to choosing the most probable values of a, given the
data (assuming no prior knowledge of a). In cases when
there are more parameters than data (i.e., m < n) it is
reasonable to set the last n-m parameters to zero then to
determine the remaining m parameters which fit the data
exactly.

In order to find the least squares solution, it is

convenient to put the problem in matrix form
y - Fa = e (A.6)

where
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£1(%;) £5(%x0) e
f fx 3\ .
F = 142/
¥
y = .
ym

e = residual vector (dimension m)

The necessary conditions for the minimum are easily found

by differentiating to be

2(28T

= : (A.7)
5a e 0

or using Eq. (A.6) and the definition of F
2(-F)T(y-Fa) =0
or, finally

FT

(F'F)a = Fly (A.8)

The solution is unique when the matrix FIF is nonsingular.

Instead of solving Eq. (A.8) directly for

a = (FTF)-lFTy (A.9)

Golub (3) suggested using the Householder (4) decomposi-

tion of the matrix F, i.e.,

F = QR (A.10)
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where Q is orthogonal and R has all elements below the
diagonal equal to zero. Thus, Eq. (A.8) can be rewritten

as
(or)T(Qr)a = (QR)Ty (A.11)

or since Q is orthogonal (i.e., Q"1 = oT)

(RTR)a = RTQ%y (A.12)

for the case when m > n, R is of the form

where U is upper triangular, and the coefficient matrix

for a becomes
RTR = U'U (A.13)
Now, let the right hand side be partitioned so that
z
QTy = ... (A.14)
%2
Since U and F have the same rank = n, Eq. (A.l4) becomes

Ua = z3 (A.15)

The solution to Eq. (A.l15) involves only a simple back

substitution since U is triangular.
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This procedure has been implemented in a standard
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utilized to compute the regression parameters in the

turbulence model.
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APPENDIX I.B DIGITAL SPECTRAL ANALYSIS

The power spectral density of a stationary random
process x(t) is defined as

= -igt
Sy(w) = _“f R (1) e dat (B.1)
where Ry(.) is the autocorrelation function of x(t) given

by
R (1) = E [x(£)x(t+7)] (B.2)

If the random procesé x(t) is sampled at intervals A (con-
stant) then the discrete value of x(t) at time t = raA is
written X, and the sequence {kr}, r=0,1, 2, ..., is
called a discrete time sefies. The objective of time
series analysis is to determine the statistical character-
istics of the original function x(t) by manipulating the
discrete time series {x,.}. The main interest is the fre-
quency composition of x(t). For this, the power spectral
density of x(t) is estimated by analyzing the discrete
time series obtained by sampling a finite segment of

x(g). Discrete Fourier transform (DFT) of a time series

{x,}r © = 0, 1, 2, «e., (N-1) is defined as follows:

27k
L N-1 -i(—)F
xk = N 20 xr e k = 0' ll 2' oo o (N"l)
r=

(B.3)
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and the inverse discrete Fourier transform (IDFT) is given
by

N-1 i 2#r
e (F)k

X = z X N r = 0, l, 2' ee oy (N-l)
r k=0 k

(B.4)

where the range of the Fourier components X) is limited to
k = 0 to (N-1) corresponding to harmonics of frequency
w., = 27k _ 27K yhere T = Na is the finite segment of the
k T Na
sampling function x(t) and A is. the sampling interval.
It can be shown (1) that the spectrum of x(t) can be
estimated by g(mk) as follows

S(w) = TS, ' (B.5)

where Sy is the DFT of the discrete autocorrelation Rf
which for two random processes x(t) and y(t) and their

corresponding sampled time series {X,} and {y,} is given
by

xsys+r r = 0’ l' 2' e e o f (N-l)

(B.6)

Substituting for x, and y, from (B.4) it is possible to

demonstrate that Sk can be obtained as
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- *
xxk - Xk %
- *
Seyk = ¥k Yk
(B.7)
- *
Sexk = Yk %k

yyk k 'k

where the complex conjugate of X and Y are denoted at X*
and Y*.

The fast Fourier transform subroutine listed in
Reference (1) is used to evaluate the DFT's of the time
series. The FFT works by partitioning the full sequence
{xy} into a number of shorter sequences. Instead of cal-
culating DFT of the original sequence, only the DFT's of
the shorter sequences are computed and then averaged to
yield the full DFT of {X,.}. A cosine data taper function
is used to smooth the data at each end of the data record
before carrying out the DFT to improve the shape of the

resulting spectral density (2,3).
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APPENDIX C. COMPUTER CODE LISTING

Listing of the program SIMULX.
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PROGRAM SIMULX (INPUT,OUTPUT)

cceeeccecccecccccececececcecccceccecccecececccccccccccccccccCCCCCCClClllllliliiL

PROGRAM SIMULX GENERATES THE WIND TURBULANCE AT POINTS ALONG THE
BLADE IN THE ROTOR DISK AND FINDS THE FREQUENCY SPECTRUM OF EACH
VELOCITY COMPONENT. A UNIFORRMLY DISTRIBUTED RANDOM NUMBER IS
GENERATED TO SIMULATE WHITE NOISE. EACH TURBULENCE VELOCITY TERM
MODELED AS A STATIONARY RANDOM PROCESS GIVEN BY AN EQUATION OF
THE FORM

D(U) /DT + A*U =B *y

WHERE W : NON-DIMENSIONAL ZERO MEAN WHITE NOISE WITH POWER
SPECTRAL DENSITY SW.
A; : ATMOSPHERIC PARAMETER CONSTANTS.
B
SOLUTION TO THIS EQUATION FOR A DISCRETE TIME WHITE NOISE CAN BE
WRITTEN AS

U(K+1) = PHI(K,K+1) * U(K) + W(K)

c

C

C

C

c

C

C

C

C

o

C

C

C

>

c

c

c

C

C

c

C

C WHERE U(K); + SOLUTIONS AT TIMES T(K); T(K+1)

c U(K+1)

c ~ PHI(K),K+1) : TRANSITION FUNCTION FROM TIME T(K)
c TO T(K+1)

c W(K) : DRIVEN RESPONSE AT T(K+1) DUE TO THE

c PRESENCE OF WHITE NOISE INPUT DURING TIME
C T(K), T(K+1) INTERVAL. NOTE THAT W(K) IS
C A WHITE NOISE RANDOM SEQUENCE.

C SUBROUTINE ATMOS GENERATES THE ATMOSPHERIC CONSTATNTS PARAMETERS
C A'S AND B'S. SUBROTINE RANDOM GENERATES A SEQUENCE OF UNIFORMLY
C DISTRIBUTED RANDOM NUMBERS WHILE ROUTINE MEANVAR CALCULATES MEAN
C AND VARIANCE OF TIME SERIES.

C SUBROUTINE PSD IS USED TO GENERATE THE SPECTRUM OF THE GENERATED
C SIGNALS. STANDARD PLOT OF RANDOM VELOCITY VS TIME IS OBTAINED

C USING SUBROUTINE PLTSTND. SUBROUTINE PLTLOG PROVIDES LOG-LOG

C PLOT FOR SPECRUM VS FREQUENCY.

C

C

C
C

C

C

C
C
c
c

NOTE: IF THE NUMBER OF GENERATED RANDOM VELOCITY
COMPONENTS, NRVELOC, IS NOT EVENLY DIVISIBLE BY
LENGTH OF THE SPECTRUM, LSPECT, THEN NRVELOC
MUST BE SMALLER THAN THE DECLARED SIZE OF RANDOM
VELOCITY COMPONENT ARRAYS AT MOST BY LSPECT SO
AFTER PADDING THE TIME SERIES IT IS NOT OVER SIZED.

a0 a00a00000000




80000000000000000000000

126

c

LIST OF ARGUEMENTS: C
CONST : CONSTATNT COEFFICIENT IN THE POWER RESIDUE ALGURITHM C
(SUBROUTINE RANDOM) FOR GENERATION OF UNIFORMLY c
DISTRIBUTED RANDOM NUMBERS C

DIVIDER : MODULE USED IN FUNCTION MOD(.) IN SUBROUTINE RANDOM C
SEED : INITIAL RANDOM NUMBER USED IN THE POWER RESIDUE c
ALGORITHM, SUBROUTINE RANDOM C

NWCOMP : NUMBER OF TURBULENT VELOCITY TERMS IN THE ATMOSPHERIC C
MODEL c

NRVELOC : NUMBER OF ELEMENTS OF RANDOM TURBULENT VELOCITY c
COMPONENTS SEQUENCE c

NPTS ¢ NUMBER OF POINTS ALONG THE BLADE AT WHICH TURBULENT c
VELOCITY IS EVALUATED c

NBINS : NUMBER OF SUBINTERVALS ON THE POSITIVE VELOCITY C
AXIS FOR DETERMINING PROBABILITY DISTRIBUTION C

PROBDIS : ARRAY OF SIZE (2¥NBINS) WHICH CONTAINS PROBABILITY c
DISTRIBUTION OF THE TURBULENT VELOCITY COMPONENTS c

IN EACH SUBINTERVAL(BIN) c

VRANGE : MAXIMUM VALUE OF TURBULENT VELOCITY AS AN INTEGER c
MULTIPLE OF ITS VARIANCE, SUBROUTINE PROB c

c
CCCCCCCCCccccecccecccecececececcceececccecceccccececcceccccececececcccecceccceccccccecce

INTEGER NWCOMP,NPTS,LSPECT,LP2,NRVELOC

INTEGER NBINS,NLABEL,CONST

PARAMETER (LSPECT=128,LP2=7)

PARAMETER (NWCOMP=12,NPTS=1,NLABEL=1,NBINS=16)

REAL R,ROTR,OMEGA,OMEGAZ,DELTAT,DIVIDER,VRANGE
REAL VX(6500),VY(6500),VZ(6500),Y(6500),X(200)
REAL PROBDIS(2%NBINS)

REAL XX(NPTS),YY(NPTS),ZZ(NPTS) -

REAL A(NWCOMP),B(NWCOMP),CC(NWCOMP) ,DD(NWCOMP)

REAL PSY(LSPECT/2+1),F(LSPECT/2+1),SOUT(LSPECT/2+1)
COMPLEX ZY(LSPECT)

DOUBLE PRECISION SEED

CHARACTER *7 FILEIN, FILEOUT, LABEL(NLABEL)®*40
CHARACTER #2 ANS1, ANS*1

COMMON /TURBINE/ OMEGA,OMEGAZ,ROTR

COMMON /WIND/ TL,TI,SW,VW

COMMON /ATMOS/ A,B

COMMON /RAND/ CONST, SEED, DIVIDER

NAMELIST /INDATA/ CONST,DELTAT,DIVIDER,SEED,NRVELOC,OMEGA,

&
»

OMEGAZ ,ROTR,RRATIO,TI,TL,VRANGE, VW

* ... CONVERSION FACTORS ....

*

PI = ACOS(-1.)
CDEGRAD = PI/180.
CRPMRPS = 2.%*PI/60.
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CMPHFPS = 5280./3600.
#*
# .... INTERACTIVE : SELECT INPUT AND OUTPUT FILES,
* OPEN FILES, READ DATA FILE. USE NAMELIST.
881 PRINT *, ' !
PRINT *, 'ENTER NAME OF THE NEW DATA FILE '
READ '(A)', FILEIN
OPEN (5,FILE=FILEIN)
PRINT #, ' '
PRINT *, 'ENTER THE NAME OF OUTPUT FILE '
READ '(A)', FILEOUT
OPEN (6,FILE=FILEOUT)

IR RN INPIJT se e

««.. READ THE PLOT LABELS ....

L 2R R IR IR J

DO 100 I=1,NLABEL
READ (5,'(A)') LABEL(I)
100 CONTINUE
READ (5, INDATA)
REWIND (5)
. CLOSE (5)

# ... PRINT ECHO OF INPUT DATA ....
L

1 PRINT #, ' °
PRINT 5, 'CONST =', CONST
PRINT 6, 'DELTAT =', DELTAT , '(SEC) '
PRINT 7, 'DIVIDER =', DIVIDER
PRINT 7, 'SEED  =', SEED
PRINT 5, 'NRVELOC =', NRVELOC
PRINT 6, 'OMEGA =', OMECA , '(RPM) '
PRINT 6. 'OMECAZ =', OMEGAZ , '(DEG) '
U

’ -

PRINT 6, 'TI =TI , '(PERCENT) '
PRINT 6, 'TL =t TL '(FEET)  °
PRINT 6, 'VRANGE =', VRANGE (FEET)
PRINT 6, 'VW = W . '(MILES/HR)"'

5 FORMAT (1X,A15,18)
6 FORMAT (1X,A15,F12.3,T35,A15)
'7 FORMAT (1X,A15,E20.13)

: «ses INTERACTIVE: CHANGE DATA VALUES & REPEAT ECHO CHECK OR CONTINUE ..

PRINT *, ' '
PRINT *, 'DO YOU WANT TO CHANGE ANY VALUES ? ENTER(Y OR N)'
READ '(A)', ANS
IF (ANS .EQ. 'Y') THEN
PRINT #, ' '
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PRINT *, 'TO CHANGE VALUES, LEAVE COLUMN 1 BLANK AND TYPE'
PRINT #*, '$INDATA FOLLOWED BY VALUE ASSIGNMENTS IN THE FORM:'
PRINT *, 'NAME = VALUE, NAME = VALUE ,...,

PRINT *, 'NOTE : COLUMN 1 MUST BE BLANK; TERHINATE WITH ¢ '
READ INDATA

PRINT #*, ' !

GO TO 1

ENDIF

]
# _.... UNIT CONVERSIONS : (RPM) TO (RAD/SEC); (DEG) TO (RAD) ....
* (MPH) TO (FT/SEC)

OMEGA = OMEGA * CRPMRPS

OMEGAZ = OMEGAZ * CDEGRAD

W = VYW  * CMPHFPS

WRITE (6,10) CONST,SEED,DIVIDER
10 FORMAT(//,5X,'POWER RESIDUE METHOD WITH THE FOLLOWING PARAMETERS'

Re Re Re Re

L R I R

y/ 45X, 'IS USED TO GENERATE UNIFORMLY DISTRIBUTED RANDOM '

, 'NUMBERS',//, 10X, 'CONSTANT COEFF, CONST',T35,'= ',I18,/,10X

, 'SEED',T35,'=s ',1X,E15.8,/,10%X
, 'MODULE DIVIDER, DIVIDER',T35,'s ',1X,E20.13)

«+e+ GENERATE ATMOSPHERIC COEFFICIENTS ....

CALL ATMOS

L IR

«e«. PRINT ATMOSPHERIC COEFFS ....

WRITE (6,15)
15 FORMAT(//,20X,'ACOEFF', 12X, 'BCOEFF')
DO 140 I=1,NWCOMP

20

WRITE (6,20) I,A(I),B(I)
FORMAT(/,5X,15,5X,E13.6,5X,E13.6)

140 CONTINUE

% ... GENERATE RANDOM VELOCITIES ...

"R = RRATIO * ROTR
ANGSTEP = DELTAT * OMEGA
IF (NPTS .EQ. 1) THEN

BEGINR = R

FINKR =R
ELSE

NSEG=NPTS-1

PRINT #*, 'NO. OF SEGEMENTS ALONG THE BLADE, NSEG= ',NSEG

PRINT #, 'NO. OF POINTS ALONG THE BLADE WHERE VELOCITY '
PRINT #, 'COMPONENTS ARE CALCULATED, NPTS= ',NPTS

PRINT #, 'ENTER THE BEGINNING AND FINAL RADIUS ALONG THE '
PRINT #, 'BLADE, BEGINR, AND FINR.'

READ *, BEGINR,FINR
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ENDIF
DO 200 J=1,NRVELOC
PSI=J#ANGSTEP+OMEGAZ
""" CALL TURBS (XX,YY,ZZ,DELTAT,BEGINR,FINR,NPTS,PSI)
T eRed)= xx(1)
vY(d)= YY(1)
vZ(1)= 22(1)
200 CONTINUE

# ... CALCULATE MEAN AND VARIANCE OF THE TIME SERIES
*

[N X ]

CALL MEANVAR (VXMEAN,VXVAR,VX,NRVELOC)
CALL MEANVAR (VYMEAN,VYVAR,VY,NRVELOC)
CALL MEANVAR (VZMEAN,VZVAR,VZ,NRVELOC)

WRITE (6,25) NRVELOC,DELTAT,R,OMEGA,OMEGAZ,VW,TL,TI,SW
& ,VXMEAN, VXVAR, VYMEAN, VYVAR, VZMEAN, VZVAR
25  FORMAT(//,10X,'NUMBER OF RANDOM VELOCITIES GENERATED, NRVELOC'
,T65,'= ',15,/, 10X, 'TIME STEP TO GENERATE THE RANDOM !
' \VELOCITY, DELTAT',T65,'z ',E12.5,/,10X,'RADIAL DISTANCE '
' 170 SELECTED POINT ALONG THE ROTOR, R \T65,'= ',E12.5,/
,10x,'ROTOR SPEED, OMGA',TUd},'s ',E12.5, TE, ' (RAD/SEC) ',/
,10X, ' INITTAL ROTATION, OMEGA-ZERO' , T4, '= ',E12.5,T64
,'(RAD)',/, 10X, 'WIND VELOCITY, VW' 44, 'z ' E12.5,T64
’ 1 (FEET/SEC) ',/ , 10X, ' TURBULENCE INTEGRAL SCALE, L', T4Y
'12 1 £12.5,T64, ' (FEET)',/, 10X, ' TURBULENCE INTENSITY, '
JUTIY, 44, '= 1 ,E12.5 T64,'(PERCENT) ,/, 10X, 'SPECTRUM OF THE '
,'INPUT WHITE NOISE, SwW =',T65,'s ',E12.5,5X,'(SEC)',/,10X
, 'MEAN VALUE OF VX =',E14.T,4X,'VARIANCE OF VX =' JE14.7,/,10X
) '"MEAN VALUE OF VY =',E14.7,4X, 'VARIANCE OF VY =’ JE14.7,/,10X
' \MEAN VALUE OF VZ =',E14.7,4X, 'VARIANCE OF VZ =' "E14.7)

Re R* Re Re Re Re Re Qe Qo Qe Qe Qe Re

DO 220 J=1,NRVELOC
VX(J)=VX(J)-VIMEAN
VY(J)=VY(J)-VYMEAN
VZ(J)=VZ(J)-VZMEAN

220 CONTINUE
*

PRINT *, 'TO GET LIST OF GENERATED RANDOM VELOCITIES VX, VY, VZ '
PRINT *, 'ENTER (Y OR N)'
READ '(A)', ANS
IF (ANS .EQ. 'Y') THEN

PRINT #, 'ENTER THE NO. OF RANDOM VELOCITIES TO PRINT '

PRINT #, 'UP TO NRVELOC=',NRVELOC

READ *, NOUT

WRITE (6,27) NOUT,DELTAT

DO 225 J=1,NOUT

WRITE (6,29) J,VX(J),VY(J),VZ(J)
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225 CONTINUE

ENDIF
T FORMAT (//, 10X, 'NUMBER OF RANDCM NUMBERS TC PRINT,NCUT=',IE,/,
& 10X, 'TIME STEP TO GENERATE THE RANDOM VELOCITIES '
& ,'VX, VY, VZ, DELTAT-',E10.3,/,T28
& ,'VX',TU8,'vyY',T68,'Vv2'," (MEANS ARE SUBTRACTED)')
29 FORMAT (10X,IH4,T20,E14.7,T40,E14.7,T60,E14.7)

# _... PLOT RANDOM VELOCITY TIME SERIES VS TIME ....
PRINT *, 'TO USE SUBROUTINE PLTSTND TO PLOT THE GENERATED RANDOM '
PRINT *, 'VELOCITY VS TIME , ENTER (Y OR N) '
READ '(A)', ANS
882 IF (ANS .EQ. 'Y' ) THEN
PRINT #*, 'SELECT THE RANDOM VELOCITY TIME SERIES. ENTER '
PRINT #, ' VX OR VY OR VZ. '
READ '(A)', ANS1
PRINT #, 'ENTER THE LENGTH OF RANDOM VELOCITY TIME SERIES '
PRINT #, ',LVPLT FOR PLOTTING UP TO NRVELOC =',NRVELOC
READ #, LVPLT
IF ( ANS1 .EQ. 'VX' ) THEN
DO 230 I=1,LVPLT
Y(I)=VX(I)
230 CONTINUE
ELSEIF ( ANS1 .EQ. 'VY' ) THEN
DO 232 I=1,LVPLT
Y(I)=VY(I)
232 CONTINUE
ELSEIF ( ANS1 .EQ. 'VZ' ) THEN
DO 234 I=1,LVPLT
Y(I)=VZ(I)
234 CONTINUE
ENDIF
CALL PLTSTND (Y,LVPLT,DELTAT,ANS1)
PRINT #
PRINT #
PRINT #, 'DO YOU WANT TO PLOT ANY OTHER RANDOM VELOCITY '
_PRINT #*, 'TIME SERIES ? ENTER (Y OR N)'
READ '(A)', ANS
GO TO 882 -
ENDIF
#® _ ... EVALUATE PROBABILITY DISRIBUTION OF RANDOM VELOCITY ....
PRINT *, 'DO YOU WANT TO EVALUATE PROBABILITY DISTRIBUTIONS OF'
PRINT #*, 'THE GENERATED RANDOM VELOCITIES ? ENTER (Y OR N)'
READ '(A)', ANS
IF (ANS .EQ. 'Y') THEN
DO 250 KPROB =1,3
IF (KPROB .EQ. 1) THEN
DO 240 I=1,NRVELOC
Y(I)=VX(I)




240

242

244

245

246

248
250
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CONTINUE
VARIANC=VXVAR
ANS?1 = 'VX!
ELSEIF (KPROB .EQ. 2) THEN
DO 242 I=1,NRVELOC
Y(I)=VY(I)
CONTINUE
VARIANC=VYVAR
ANS1 = 'VY'
ELSEIF (KPROB .EQ. 3 ) THEN
DO 244 I1=1,NRVELOC
Y(I)=VZ(I)
CONTINUE
VARIANC=VZVAR
ANS1 = 'V2!
ENDIF
GENERATE UNITY VARIANCE RANDOM VELOCITY TIME SERIES ceee
DO 245 I=1,NRVELOC
Y(I)=Y(I)/SQRT(VARIANC)
CONTINUE

CALL PROB (Y,NRVELOC,NBINS,VRANGE,PROBDIS)

NBX2:=2#NBINS
NBX2M1=NBX2-1
DELTAV=VRANGE/(NBINS-1)
DO 246 I=1,NBX2M1
X(I)=-VRANGE+(I-1)®*DELTAV
CONTINUE
WRITE (6,30) ANS1,NRVELOC,ANS1
DO 248 I=1,NBX2
IF (I .EQ. 1) THEN
WRITE (6,32) X(I),PROBDIS(I)
ELSEIF (I .EQ. NBX2) THEN

IM1=I-1

WRITE (6,34) X(IM1),PROBDIS(I)
ELSE

IM1=I-1

PROBDEN = PROBDIS(I)/DELTAV

XAVE = (X(I)+X(IM1))/2.

STNDEN = EXP(-0.5%XAVE#¥*2)/SQRT(2.%*PI)
WRITE (6,36) X(IM1),X(I),PROBDIS(I),XAVE,PROBDEN
: » STNDEN
ENDIF
CONTINUE

CONTINUE
ENDIF

30 FORMAT (//,10X,'PROBABILITY DISTRIBUTION OF RANDOM VELOCITY '

&
&
&

,'TIME SERIES',A4,' OF LENGTH = ',I5,//,10X
, 'PROBABILITY OF VARIATES', 15X, 'MID-INTERVAL',5X
, 'PROBABILITY DENSITY',S5X,'STANDARD NORMAL',/,10X




&

oo e
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,'IN THE INTERVAL',T66,'ORDINATES OF ',Ad,T93
, 'ORDINATES',/)

TANMIAM anv 1T ooC WA“ ' 5v (] t -
TVINING \ IVAy Liniw a8 o \ ,5‘602, ) ',B‘i!o"

FORMAT (10X, ’GREATER THAN ' '( ,F6 .2,') -’,E11.£
FORMAT (151,'(',5‘6 2,' ,! F6 2,') =',E11.4,T52,F
,T68,E12.6,T90,E12.6)

)
)
6.2

#* ... GENERATE FREQUENCY SPECTUM OF THE GENERATED RANDOM VELOCITY ....

L 2 B IR IR IR BE IR B BE

884

252

254

256

saecse
oee e
ees e
oeve
eeese
L N ]
csaes
L N
L2 R )

300

PRINT #, 'DO YOU WANT TO GENERATE THE FREQUENCY SPECTRUM OF '
PRINT #, 'THE TIME SERIES ? ENTER (Y OR N)'
READ '(A)', ANS
IF (ANS .EQ. 'Y') THEN
PRINT #, 'INPUT ONE TIME SERIES TO GENERATE SPECTRUM. '
PRINT *, 'ENTER VX OR VY OR VZ '
READ '(A)', ANS1 .
IF ( ANS1 .EQ. 'VX' ) THEN
DO 252 I=1,NRVELOC
Y(I)=VX(I)
CONTINUE
ELSEIF ( ANS1 .EQ. 'VY' ) THEN
DO 254 I=1,NRVELOC
¥(1)=vY(I)
CONTINUE
ELSEIF ( ANS1 .EQ. 'VZ' ) THEN
DO 256 I=1,NRVELOC

Y(I)=VZ(I)
CONTINUE
ENDIF
LENGTH OF THE TIME SERIES HAS TO BE EVENLY DIVISIBLE coee
" BY L, LENGTH OF EACH SUBSEGMENT. IF THIS CONDITION ceee

DEOS NOT MEET PAD BOTH TIME SERIES WITH ZEROES AT coee

RIGHT END. cees

NOTE: IF THE NUMBER OF GENERATED RANDOM VELOCITY ceee
COMPONENTS, NRVELOC, IS NOT EVENLY DIVISIBLE BY ....
LENGTH OF THE SPECTRUM, LSPECT, THEN NRVELOC coee
MUST BE SMALLER THAN THE DECLARED SIZE OF RANDOM ....
VELOCITY COMPONENT ARRAYS AT MOST BY LSPECT. cees

LD2=LSPECT/2

LD2P1=LD2+1

NSEG= INT( NRVELOC/LSPECT)
RNSEG=REAL(NRVELOC) /REAL (LSPECT)
DIFF=RNSEG-NSEG
IF(DIFF .NE. 0.0) THEN
LTS=(NSEG+1)*LSPECT
IPAD=NRVELOC+1
DO 300 J=IPAD,LTS
Y(J)=0.0
CONTINUE
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2000

ENDIF
CALL PSD (Y,LTS,LSPECT,LP2,DELTAT,PSY,ZY)
FORM THE FREQUENCY VECTOR ....

DO 325 I=1,LD2P1
II=I-1
F(I)=II/(LSPECT®*DELTAT)
CONTINUE

PRINT POWER SPECTRUM ....
WRITE (6,40) ANS1
DO 340 I=1,LD2P1
WRITE (6,42) F(I),PSY(I)
CONTINUE .
PRINT SUM OF THE POWER SPECTRA ceee
SUMY=0.0
DO 345 K=1,LD2P1
SUMY=SUMY+PSY (K)
CONTINUE
WRITE (6,44) ANS1 , SUMY
FORMAT(//,5X, 'FREQUENCY ', T20, 'POWER SPECTRUM',/,T24,Al)
FORMAT(4X,F10.4,T20,E14.7)
FORMAT(//,10X,'SUM OF THE PSD OF(',Al4,' )S=',E14.7)

ELIMINATE ZERO FREQUENCY FOR LOG-LOG PLOTTING ....

DO 370 I=2,LD2P1
J=I-1
F(J)=F(I)

CONTINUE
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PLOT LOG-LOG SPECRTAL DENSITY OF RANDOM VELOCITY VS FREQUENCY ....

PRINT #, 'TO USE PLTLOG TO PLOT THE SPECTRUM ENTER (Y OR N)'

READ '(A)', ANS
IF (ANS .EQ. 'Y') THEN
GENERATE SPECTRUM VECTORS cene
DO 380 1=2,LD2P1
J=I-1
SOUT(J)=PSY(I)
CONTINUE

PLOT POWER SPECTRUM N
CALL PLTLOG (SouUT,F,LD2,LABEL,ANS1)

PRINT #
ENDIF

PRINT #, 'DO YOU WANT SPECTRUM FOR OTHER TIME SERIES? '




PRINT *, 'ENTER (Y OR N)'
READ '(A)', ANS
GO TO 854

ENDIF

PRINT #, 'DO YOU WANT TO PROCESS ANOTHER DATA FILE ? '
PRINT *, 'ENTER (Y OR N)'

READ '(A)', ANS

IF (ANS .EQ. 'Y') GO TO 881

STOP

END

134
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SUBROUTINE TURBS (XX,YY,ZZ,DELTAT,BEGINR,FINR,NPTS,PSI)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

c c
c c
c SUBROUTINE TURBS CONSTRUTS TURBULENCE VELOCITY COMPONENTS C
c ALONG THE BLADE FOR EACH AZIMUTH ANGLE AT EACH TIME STEP. C
c THE NUMBER OF POINTS ALONG THE BLADE AT WHICH TURBULENCE C
c VELOCITY IS EVALUATED IS GIVEN AS A PARAMETER , NPTS IN c
C PROGRAM SIMULX, AND CAN EASILY BE CHANGED. THE TURBULENCE C
c VELOCITY COMPONENTS ARE COMPUTED AT EQUALLY DISTANCED C
C POINTS ALONG THE BLADE FROM AN INITIAL RADIUS TO A FINAL c
c RADIUS WHICH USER CAN DETERMINE. C
c IN THE PRESENT ANALYSIS ONLY ONE RADIAL POSITION AT THE C
c TIP WAS CONSIDERED (NPTS = 1). C
c C
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeccccccceeeeee

INTEGER CONST,NPTS,NWCOMP
REAL BEGINR,FINR,DELTAT,PSI,DIVIDER
PARAMETER ( NWCOMP=12 )
REAL XX(NPTS),YY(NPTS),ZZ(NPTS),U(NWCOMP),W(NWCOMP)
REAL A(NWCOMP),B(NWCOMP),CC(NWCOMP ) ,DD(NWCOMP)
DOUBLE PRECISION SEED
COMMON /TURBINE/ OMEGA,OMEGAZ,ROTR
COMMON /WIND/ TL,TI,SW,VW
COMMON /ATMOS/ A,B
COMMON /RAND/ CONST, SEED, DIVIDER
SAVE W
DATA W /NWCOMP * 0.0/
#* ... GENERATE COEFFICIENTS FOR FILTERS .....
DO 10 I=1,NWCOMP
AT=DELTAT*A(I)
CC(I)=EXP(-AT)
DD(I)=B(I)*SQRT((6.*SW/A(I))*(1.-EXP(-2.%AT)))
10 CONTINUE

#* ... GENERATE NWCOMP RANDOM NUMBERS .....
#*

. CALL RANDOM (U,NWCOMP)
#® ... GENERATE WIND VELOCITY COMPONENTS ....
DO 20 I=1,NWCOMP
U(1)=0(1)-0.5
W(I)=CC(I)*W(I)+DD(I)*U(I)
20 CONTINUE
IF (NPTS .EQ. 1) THEN
RSTEP=0.0
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ELSE
RSTEP=(FINR-BEGR)/(NPTS-1)
ENDIF
R=BEGINR
PSIX2=2%pPSI
ROTRSQ=ROTR#*ROTR
DO 30 I=1,NPTS
R=R+(I-1)*RSTEP
RSQ=R#*R
XX(I)=W(1)=-(W(6)-W(T) )*R*COS(PSI)

& -(W(8)-W(9))*RRSIN(PSI)
YY(I)=W(2)+W(5)*R*COS(PSI )+W(4)*R*SIN(PSI)

& +W(10)*(RSQ-ROTRSQ/2.)

& +W(11)*RSQ*COS(PSIX2)+W( 12)*RSQ*SIN(PSIX2)
2Z(I)=W(3)+(W(6)+W(T) ) *R®SIN(PSI)

& +(W(8)+W(9) )*R®*COS(PSI)

30 CONTINUE
RETURN

END




SUBROUTINE ATMOS
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecceeee

c
C
c
c
c
c
c
c
c
c
c

SUBROUTINE ATMOS COMPUTES THE TURBULENCE MODEL PARAMETERS A, B,
AND SW, WHERE A(I) AND B(I) ARE THE DIAGONAL ELEMENTS FOR
THE MATRICES IN THE WIND STATE EQUATION

DX/DT = -A *X + B*W

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeccececcccececccceccece

INTEGER NWCOMP

PARAMETER (NWCOMP=12)

REAL ROTR,TI,TL,SW,VW

REAL A(NWCOMP),B(NWCOMP)

COMMON /TURBINE/ OMEGA,OMEGAZ,ROTR
COMMON /WIND/ TL,TI,SW,VW

COMMON /ATMOS/ A,B

# ... CALCULATE THE POWER SPECTRUM FOR THE NOISE INPUT ....

SW=TL*(TI*TI)/VW/10000.

RR=ROTR/TL

TWSQ=VW*TW

ROTRSQ=ROTR#*#2

DIMCOA= VW/TL

DIMCOBZ=VWSQ/TL

DIMCOB1=VWSQ/ (ROTR¥*TL)

DIMCOB2=VWSQ/( ROTRSQ*TL)

A(1)= (2.-2.89U*RR*(1.-.1383*RR)/(1.+2.049%RR)) #*DIMCOA
B(1)= (2.-3.290*RR#*(1.+.02T0*RR)/(1.+2.054#*RR)) *DIMCOBZ
A(2)= (1.-1.T13*RR*(1.-.0791*RR)/(1.+2.048%RR)) *DIMCOA
B(2)= (SQRT(2.)-2.T13%RR*(1.+.0159*RR)/(1.+2.051%RR))

+ #DIMCOBZ

A(3)= A(1)

B(3)= B(1) ,

A(4)= (.327/RR + .595 - .114%RR) * DIMCOA

B(4)= (.281/RR** 25 . 645 - .150%RR) *DIMCOB1
A(5)= A(H)

B(5)= B(%4)

A(6)= (.U434/RR + .917 - .153%*RR) ¥*DIMCOA

B(6)= (.258/RR#*.25 + 647 - .1093*RR) *DIMCOB1
A(T)= (.5342/RR + 1.276 -.214T*RR) #*DIMCOA

B(T)= (.1167/RR**.25 4 .7733 -.1284%RR) *DIMCOB1

AND W IS WHITE NOISE WITH PSD=SW.
THE EQUATIONS WERE DETERMINED BY LEAST SQUARE REGRESSION TO
DATA PRODUCED BY NUMERICAL COMPUTATION. (SEE REPORT)

c
c
c
C

c
"
C
C
c
C
C
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A(8)= A(T)

BS§2= ?572 " s a Nnen -~ FI¥ ¢ \

ALG)= (1.054/RR + 1.00F + 2.1954*RR) "DIMCCA

B(9)= (.3546/RR**.25 + ,3951 + .2593*RR) *DIMCOB1
A(10)= (1.091/RR + .0276 + .0686*RR) *DIMCOA
B(10)= (.5508/RR¥*.25 4+ ,6U473 -.1365%RR) *DIMCOB2
A(11)= (1.081/RR + .02T79 + .0685%*RR) *DIMCOA
B(11)= (.3896/RR**.25 + .4567 -.0948*RR) #*DIMCOB2
A(12)= A(11)

B(12)= B(11)

RETURN

END




SUBROUTINE RANDOM (S,N)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

c
c
SUBROUTINE RANDOM GENERATES UNIFORMLY DITRIBUTED RANDOM c
NUMBERS BETWEEN ZERO AND ONE USING POWER RESIDUE METHOD. C
C
c
C

aaaaaan

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecccecccececcceccecececeeece

INTEGER CONST,N
REAL DIVIDER,S(N)
DOUBLE PRECISION SEED, INTPROD
COMMON /RAND/ CONST, SEED, DIVIDER
DO 10 I=1,N
INTPROD=CONST*SEED
IF (INTPROD .LT. DIVIDER) THEN
S(I)=INTPROD
ELSE
S(I)=INTPROD-INT( INTPROD/DIVIDER)#*DIVIDER
ENDIF
SEED=S(I)
S(I)=S(I)/DIVIDER
10 CONTINUE
RETURN
END
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SUBROUTINE MEANVAR (MEAN,VAR,S,N)

ccceeeeccceccccececcececcececeecceeccececcececcecececcecceccceceecceccececee

c
c
c
c
c
C

CCcccccecececececceecceccccecceceecceeccececcecececccccececcececcccecece

20

30

SUBROUTINE MEANVAR COMPUTES MEAN AND VARIANCE

OF TIME SERIES.

INTEGER N

REAL MEAN,VAR,S(N)

SUM=0.

DO 20 I=1,N
SUM=SUM+S(I)

CONTINUE

MEAN=SUM/FLOAT(N)

DIFF=0.

DO 30 I=1,N
DIFF=DIFF+(S(I)-MEAN)#*#2

CONTINUE

VAR=DIFF/FLOAT(N)

RETURN

END

Qo0
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SUBROUTINE PROB (VTS,LVTS,NBINS,VRANGE,PROBDIS)
ceeccceecceecceceeccccccccccccccececcecccecececccececcecccceccecccceccce

c c
c c
c SUBROUTINE PROB COMPUTES PROBABILITY DISTIBUTION c
c OF TIME SERIES. c
c c
c ‘ c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeececcccececeeeee

INTEGER LVTS,NBINS,BINNUM
REAL DELTAV,VRANGE
REAL VTS(LVTS),PROBDIS(2#NBINS)
NBX2=2#NBINS
DO 20 I=1,NBX2
PROBDIS(I)=0.0
20 CONTINUE
DELTAV=VRANGE/(NBINS-1)
DO 30 I=1,LVTS
IF ( VTs(I) .LT. 0.0 ) THEN
IF ( VTS(I) .GE. -VRANGE ) THEN
BINNUM=NBINS+INT(VTS(I)/DELTAV)
ELSE
BINNUM=1
ENDIF
PROBDIS(BINNUM)=PROBDIS(BINNUM)+1./LVTS
ELSEIF ( VTs(I) .GE. 0.0 ) THEN
IF ( VTS(I) .LE. VRANGE ) THEN
BINNUM=NBINS+INT(VTS(I)/DELTAV)+1
ELSE
BINNUM=2%NBINS
ENDIF
PROBDIS(BINNUM)=PROBDIS(BINNUM)+1./LVTS
ENDIF
30 CONTINUE
RETURN
END
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SUBROUTINE PsD (Y,N,L,LP2,DT,PSY,ZY)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeccccecccccecceccceceee
SUBROUTINE PSD USES FFT TO ESTIMATE THE FREQUENCY SPECTRUM OF

TIME SERIES
ARGUMENTS
Y -INPUT VECTOR OF LENGTH N CONTAINING
: THE TIME SERIES.
N -INPUT LENGTH OF THE TIME SERIES.
L -LENGTH OF THE TIME SERIES IN EACH SEGMENT.

c

c

C

c

c

c

c

c

C

L MUST BE A POWER OF 2. c

LP2 -L=2#%LP2 (L AS POWER OF TWO) c
LD2P1 -SPECTRAL COMPUTATIONS ARE AT c
LD2P1= (L/2)+1 FREQUENCES. c

DT -SAMPLING INTERVAL (SEC) c
PSY -OUTPUT VECTOR OF LENGTH LD2P1 CONTAINING c
THE SPECTRAL ESTIMATES OF Y C

NOTE THAT THE SPECTRAL ESTIMATES ARE c

TAKEN AT FREQUENCES (I-1)/(L*DT) (HERTZ) C

FOR I=1,2, ...,LD2P1 c

ZY  -COMPLEX WORK VECTOR OF LENGTH L c
c

c

c

c

C

c

c

c

c

C

c

C

1) THE SPECTRAL DENSITY FUNCTION IS DEFINED
ACCORDING TO EQ. 2.3 FROM CHAPTER TWO.

2) PRIOR TO CALLING PSD, THE MEAN OF TIME
SERIES Y SHOULD BE REMOVED FROM EACH
ELEMENT OF THE TIME SERIES.

3) THE OUTPUT IS RETURNED IN UNITS WHICH ARE
THE (SQUARE OF THE DATA)/FREQUENCE

SEGMENT AVERAGING IS USED TO OBTAIN THE SMOOTH ESTIMATES
THE TOTAL SAMPLE SIZE N = NSEG®L = NSEG®*(2#%LP2)
WHERE NSEG = NUMBER OF SEGMENTS

QaacacaaoaaaaocaaaoaaQaaaaoaooaooaaaaoaaaaaoan

c
c
ccceeceeecccccccceccceccccccececececccecececececccecceeccececccecccccceccececcececcccccece
REAL Y(N),PSY(L/2+1)

COMPLEX ZY(L)
LD2P1 = L/2 + 1
NSEG = INT(N/L)
PI = ACOS(-1.0)



SCALE FACTOR 0.875 IS DUE TO THE COSINE TAPPERING
TO ADJUST THE POWER SPECTRAL ESTIMATE RESULTS

Qo

FACTOR=(DT*REAL(L))/(0.875)
C INITIALIZE THE PSY

DO 5 J=1,LD2P1
PSY(J)=0.0
5 CONTINUE
DO 50 I=1,NSEG
ND=(I-1)%L
DO 10 J=1,L
JPND=J+ND
ZY(J)=CMPLX(Y(JPND),0.0)
0 CONTINUE
vesa TAPERING THE DATA SEQUENCE USING ceee
sece THE COSINE TAPER DATA WINDOW ceee

e

CALL TAPER(ZY,L,DT)

e COMPUTE DFT

o0 e

* »

CALL FFT(ZY,LP2,L)
DO 30 J=1,LD2P1
PSY(J)=PSY(J)+FACTOR®ABS(ZY(J))#*ABS(ZY(J))
30 CONTINUE
50 CONTINUE

* ... AVERAGE THE RESULTS FROM NSEG SEPARATE SEGMENTS

DO 60 I=1,LD2P1
PSY(I)=PSY(I)/REAL(NSEG)
60 CONTINUE
RETURN
END
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K=ME/2
W=CMPLX(COS(PI/K) ,=SIN(PI/K))
DO § L=J,N,ME
LPK=L+K
T=A(LPK)*U
A(LPX)=A(L)-T
A(L)=A(L)+T
U=U%
RETURN
END
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SUBROUTINE FFT(A,NP,N)

SUBROUTINE FFT FROM NEWLAND (PG 220), REFERENCE 1
APPENDIX B, CALCULATES THE DFT OF A SEQUENCE A(1),
A(2), ...,A(N), WHERE N = 2##NP, BY THE FFT METHOD.

A -INPUT COMPLEX VECTOR OF LENGTH N
CONTAINING THE DISCRETE TIME SERIES
-QUTPUT COMPLEX VECTOR OF LENGTH N
CONTAINING THE REQUIRED DFT

NP -N=2##Np

N

c

C

C

C

C

c

ARGUMENTS c
C

C

C

C

C

-INPUT LENGTH OF THE TIME SERIES c
C

ancaQaaaaoaoaaaaaaaaaaan

c
CCCCCCCCCCCCCCCCecceececeeccececcccccccccecccececccecccececccececccee
COMPLEX A(N),U,W,T

PI=ACOS(-1.0)
C DIVIDE ALL ELEMENTS BY N

DO 1 J=1,N
A(J)=A(J)/N
1 CONTINUE
ND2=N/2
NM1=N-1
J=1
DO 4 L=1,NM1
IF (L .GE. J) GO TO 2
T=A(J)
A(J)=A(L)
A(L)=T
K=ND2
IF (K .GE. J) GO TO 4
J=J-K
K=K/2
GO TO 3
y J=J+K
DO 6 M=1,NP
U=(1.0,0.0)
ME=2#tM

wNn
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SUBROUTINE TAPER(ZY,L,DT)
ccececcecececececcccceccceccccccecccccececeeccceccccececccecceccccceccecee

A SMOOTH FILTER SHAPE FOR FFT ESTIMATES TO
REDUCE LEAKAGE CAN BE OBTAINED BY TAPERING

THE ORIGINAL RANDOM TIME SERIES AT EACH END.
SUBROUTINE TAPER USES A COSINE TAPER DATA

WINDOW TO SMOOTH THE DATA AT 1/10 OF EACH

END OF THE RECORD (SEE FIG 11.8, PG 146, NEWLAND,
REFERENCE 1 IN APPENDIX B).

ZY -INPUT COMPLEX VECTOR OF LENNGTH
L CONTAINING THE ORIGINAL DISCRETE
TIME SERIES
-QUTPUT COMPLEX VECTOR OF LENGTH
L CONTAING THE TAPERED DATA
-INPUT LENGTH OF THE TIME SERIES

c
C
c
C
c
C
C
C
c
c
ARGUMENTS c
c
C
c
C
C
L c
DT -SAMPLING INTERVAL C

c

c

aaaaoaaaaaaaaoaaaoaaaooaaoaan

Ccceeececeecccceccececceccecccececceecccececcccecececccceccecceccccccecee

COMPLEX ZY(L)

PI=ACOS(-1.0)
T=DT*REAL(L)
TD10=T/10.0
C1=9.0%*TD10
CONST=P1/TD10
DO 20 I=1,L
TIME=DT*REAL(I-1)
IF (TIME .LE. TD10) THEN
WT = 0.5 - 0.5 * COS(CONST * TIME)
ZY(I) = ZY(I)®T
ELSEIF (TIME .GE. C1) THEN

WT = 0.5 + 0.5 * COS(CONST * (TIME-C1))
ZY(I) = ZY(I) * WT
END IF
20 CONTINUE

RETURN
END
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SUBROUTINE PLTSTND (VTS,LVPLT,DELTAT,ANS1)
INTEGER MARK,ICODE,IRATE,MODEL
PARAMETER (MARK=0)
REAL DELTAT,WIDTH,HEIGHT,VBIAS,TBIAS
REAL VTS(LVPLT)
CHARACTER *40 TIMELBL, VELCLBL, ANS1%#2
DATA ICODE/ 1 /,IRATE/ 2400 /,MODEL/ 4014 /
DATA WIDTH/ 9.0 /,HEIGHT/ 7.0 /
DATA TORIG/ 0.0 /, VORIG/ 0.0 /, TBIAS/ 3. /, VBIAS/ 1. /
TIMELBL = 'TIME (SEC)'
VELCLBL = 'RANDOM TURBULENCE VELOCITY '//ANS1
# ... FORM MIN & MAX ON THE TIME AXIS ....
| TMIN=0.0
TMAX=LVPLT#DELTAT
TFACT=WIDTH/( TMAX-TMIN) .
# ... FIND MIN & MAX OF RANDOM VELOCITY VECTOR, VTS ....
CALL CHECK (VTS,LVPLT,VMIN,VMAX)
VFACT=HEIGHT/(VMAX-VMIN)
' CALL PLOTYPE (ICODE)
| CALL TKTYPE (MODEL)
| CALL BAUD (IRATE)
| CALL SIZE (WIDTH+6. , HEIGHT+3.)
CALL TEKPAUS
; , CALL SCALE (TFACT,VFACT,TBIAS,VBIAS,TMIN,VMIN) _
| CALL AXISL (TMIN,TMAX,TORIG,VMIN,VMAX,VORIG,0.0,1.0,
| & 0,0,-1,2,1.,1.,0.2,0)
# ... PRINT HEADINGS ....
XPOS=TMAX+. 1/TFACT
YPOS=-0.2/VFACT
CALL SYMBOL (XPOS,YP0S,0.0,0.2,40,TIMELBL)
XPOS=TMIN+1./TFACT
YPOS=VMAX+0.4/VFACT
CALL SYMBOL (XPOS,YPOS,0.0,0.2,40,VELCLBL)
# ... PLOT RANDOM VELOCITY ....
CALL VECTORS
IP=0
DO 10 I=1,LVPLT
IJ=1=-1
XT=IJ#DELTAT
| YV=VTS(I)
| CALL PLOT (XT,YV,IP,MARK)
IP=1
10 CONTINUE
CALL PLOTEND
RETURN
END




t IR IR
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SUBROUTINE PLTLOG (SPECT,FREQ,LHALF,LABEL,ANSPLT)

INTEGER MARK,NLABEL,ICODE, IRATE,HODEL

PARAMETER (NLABEL=1,MARK=26)

REAL WIDTH,HEIGHT,FBIAS,SBIAS

REAL SPECT(LHALF),FREQ(LHALF)

CHARACTER *40 LABEL(NLABEL), FREQLBL, PSDLBL*60, ANSPLT#*2

DATA ICODE/1/ IRATE/2400/ MODEL/4014/ WIDTH/9./ HEIGHT/T./

DATA FBIAS/1./ SBIAS/1./

FREQLBL = 'FREQ (HZ) '

PSDLBL = 'PSD OF '//ANSPLT//' '//LABEL(NLABEL)

FIND MIN AND MAX OF THE FREQUENCY VECTOR ....
CALL CHECK (FREQ,LHALF,FMINC,FMAXC)
FMIN=ALOG10(FMINC)
FMAX=ALOG10(FMAXC)
FFACT=WIDTH/(FMAX-FMIN)

FIND MIN & MAX OF THE SPECTRUM VECTOR ....
CALL CHECK (SPECT,LHALF,SMINC,SMAXC)
CALL RANGEL (SMINC,SMAXC,SMINR,SMAXR)
SMIN=ALOG10(SMINR)
SMAX=ALOG10(SMAXR)
SFACT=HEIGHT/(SMAX-SMIN)

CALL PLOTYPE(ICODE)

CALL TKTYPE(MODEL)

CALL BAUD(IRATE)

CALL SIZE(WIDTH+2.5,HEIGHT+2.5)
CALL TEKPAUS

CALL SCALE (FFACT,SFACT,FBIAS,SBIAS,FMIN,SMIN)
CALL AXISL (FMINC,FMAXC,FMINC,SMINC,SMAXC,SMINC,1.,1.

& ’0,0,1’1,10’10,0.1,3)

L N 2

PRINT HEADINGS ....

XPOS=FMIN+3.5/FFACT
=SMIN-0.25/SFACT
CALL SYMBOL (XPOS,YPOS,0.,0.2,40,FREQLBL)
XPOS=FMIN+1./FFACT
YPOS=SMAX+0.2/SFACT
CALL SYMBOL (XPOs,YP0s,0.,0.2,60,PSDLBL)

PLOT POWER SPECTRUM ....

CALL POINTS

1P=0

DO 100 I=1,LHALF
XF=ALOG10(FREQ(I))
YS=ALOG10(SPECT(I))
CALL PLOT (XF,YS,IP,MARK)
IP=1
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100 CONTINUE
CALL PLOTEND
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APPENDIX D. INPUT DATA FILE

The following sample input data file is for Mod-0A turbine.




151

Q@ @ & & & & & & & & & & o

aN3s
6°LY = An
‘€ = 3ONVAN
‘ook = 1
‘et = Il
°T = OILVYY
§°29 = 410y
‘06 = 2Y93W0
‘b = VO30
00E9 = J0713NAN
*LSYEST = a3iis
*LYIEBYLY IS = ¥IAINIA
2°'e = 191134
20891 = 1SNOJ VIVANIS

33713dWYS ATTYNOTLYLO0YN
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APPENDIX E. PROCEDURAL EXAMPLE OF THE PROGRAM SIMULX

INTERACTIVE RUN
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APPENDIX F. RESULTS OF THE SAMPLE RUN FOR Mod-0A TURBINE

The simulated results are as observed from the tip of a

Mod-0A wind turbine blade.
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APPENDIX II.A. PADE APPROXIMATION FOR MOVING AVERAGE

oA~ oec
E AN I

Consider the linear model given by

t
[ x(z) dt
t-T

)=

y(t) =

Differentiating gives

. 1l
Yy = T [x(t) - x(t - T)]

Laplace transforming gives
1 -T
s¥(s) = 5 [X(s) - e ®x(s)]

The transfer function is thus

¥(s) - l - e-Ts

T(s) = X(s) Ts

Forming the Padé approximation with first order numerator

and second order denominator

a, + a,s
T(s) = 5 (by = 1)
b° + bls + bzs
Expanding T(s) in a power series
1 1 2 1 3
- - e - - csm—— T + o0 0
T(s) =1 3 (Ts) + z (Ts) 3 (Ts)

Dividing the rational approximation and equating like

powers of s gives
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| B

Thus,

N
1)}
S (3]
(S0 as
+
10}
e
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APPENDIX II.B

The discrete time transfer function for

system is given by

= 21
G .(z) = ==z [g(t)|t=kT]

162

a sample data

where g(t) is the continuous time unit step response for

the turbine given as

-1 T.(s)
g(t)=l:.1[ts ]

where Tt(s) is the turbine transfer function
blade pitch angle and output torque.

For the wind turbine system

- TQ b;s + b
s (s + 2;mns + mn)
- L_l TQO bl (S + Ul)

[

tS((s + og T fmd))]

o} a -g 4t
1 1 d
TQ, + by {;5 +
n

bl os|

where

between input

e sin (wgt + a; - a)}
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w
a = tan"! _d
%4
-1 Y3
ay = tan -
1 (o7 = og4)
g, = b2
1 EI
b b,a -0 ,t
2 171 d
g(t) =TQ + = 4a sin (wyt + 04y - o)
o 2 w_w d 1l
Wy n d
-cdt
= A +Be sin (mdt + ¢)
where
b
_ 2
A=TQ +—5
“n
b,a
B = 171
Yn¥g
¢ = al -
-adt
g(t) =A +Be (sinmdt cos¢ + cosuyt sing)
_ 2z=1
G (2) = ==z [g(t)]| _n]
-odT
_z-1 7 : ze 31nwdT )
- =7 A + — =) Bcosg¢
z z-1 2 T 2odT

z- 2ze” cosu T + e




-ch 164
z (z - e COSde) )
+ ( > 7 —ZGdT) Bsing}
z- - 2ze c05de + e
-odT
(z=1) e sinde
= A + ( 5 - -zth) Bcos¢
z° - 2ze COSudT + e
-odT
(z-1) (z - e COSwdT)
+ ( _) Bsing
_ 2 -7 -ZGdT
z° - 2ze coswdT + e
-20.T
= {A(z2 - 2ze” T cosw T + e a7y
-0 ,T

+ B(z-1) e d cos¢sinde

-adT
+ B(z=-1)sing¢(z-e cosw4T) }

-20,T
{zz-ZZe-TCOSde+e d"y-1
2 -T —ogT
= {(A+Bsing)z“+(-2Ae cosu yT+Bcos e sinw T
-odT -ZOdT
-Bsinge COSde'BSin¢)z+(Ae
-odT
-Bcosée sinwdT
=0T =20 ,T
. d 2 =T 4 ,-1
+Bsinge ~cosuyT)}{2"-2ze “cosu T+e }

= {(A+Bsinu)zz+[-2Ae-TCOSde
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-ch -20dT
+Be sin(uwgT-¢)]z+[2e sin(wyT=¢)]}

=20 T
{zz-2ze-Tc05de+e dy-t

sz + Clz + Co

z  + Dlz + Do

where
C2 = A + B sing
-T —ogT
C, = = 2hAe cosw,T - B sin¢ + Be sin(w . T - ¢)
1l d o]
-20dT -adT '
Co = Ae - Be sxn(de - %)
- -T
D1 = 2ze COSde
-20,T
D = e d




